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Abstract

The NEC SX-4M cluster and Fujitsu VPP700 supercomputers are both based on
custom vector processors using low-power CMOS technology. Their basic architec-
tures and programming models are however somewhat different. A multi-node SX-
4M cluster contains up to 32 processors per shared memory node, with a maximum
of 16 nodes connected via the proprietary NEC IXS fibre channel crossbar network.
A hybrid combination of inter-node MPI message-passing with intra-node multi-
tasking or threads is possible. The Fujitsu VPP700 is a fully distributed-memory
vector machine with a scalable crossbar interconnect which also supports MPI. The
parallel performance of the MC2 model for high-resolution mesoscale forecasting
over large domains and of the IFS RAPS 4.0 benchmark are presented for several
different machine configurations. These include an SX-4/32 with 8 GB main mem-
ory unit (MMU), an SX-4/32M cluster (SX-4/16, 8 GB MMU + SX-4/16, 4 GB
MMU) and up to 80 PE’s of the VPP700.



1. Introduction

John Hennessy, professor of computer science, dean of the Stanford University School of
Engineering and co-inventor of the MIPS RISC microprocessor recently speculated during
the Supercomputing 97 conference in San Jose that vector processors would disappear
from high-performance computing within five to ten years [4]. Given the impressive
sustained floating point execution rates of the NEC SX-4 and Fujitsu VPP700 vector
processors, these two Japanese computer vendors could easily argue that ‘reports of
their demise are greatly exaggerated’. Despite the fact that the peak execution rates
of pipelined RISC microprocessors continue to double every eighteen months, highly
optimized codes can usually sustain no more than 15 to 20% of peak. This situation may
change as larger secondary cache memories become available. However, the SX-4 vector
processor can routinely achieve 1 Gflops/sec or higher on representative atmosphere,
ocean and climate codes. Indeed, both SX-4 and VPP700 processors can sustain in
the range of 30 to 50% of their rated peak performance levels. Both NEC and Fujitsu
build scalable parallel architectures based on these processors with existing or planned
customer installations capable of 100 Gflops/sec or higher sustained performance.

Cluster type architectures are becoming prevalent in high-performance computing and
current designs can trace their roots back to the pioneering work of Paul Woodward who
demonstrated the capabilities of symmetric multiprocessor (SMP) cluster supercomput-
ing in 1993 [9]. The US Department of Energy’s Accelerated Strategic Computing Ini-
tiative (ASCI) has also led to the announcement of cluster type computers from several
US manufacturers. Individual nodes contain from 1 to 128 RISC/cache or vector proces-
sors. Typically, shared or distributed-shared memory (DSM) is used within a node and
additional cache-coherence mechanisms are often present. Low-latency, high-bandwidth
interconnection networks then link these nodes together. NEC SX-4M clusters and the
Fujitsu VPP700 perhaps represent opposite ends of the design spectrum. SX-4 nodes
contain up to 32 vector processors and 8 Gbytes of fast SSRAM main memory, whereas
the VPP700 is a fully distributed-memory machine. Each VPP700 processing element
contains a vector processor along with up to 2 Gbytes of slower SDRAM memory. The
two machines are compared in this paper by using benchmarks of two decidely different
atmospheric models. The ECMWF IFS forecast model is a global weather prediction
model based on the spectral transform method. The Canadian MC2 is a nonhydrostatic,
fully compressible limited area atmospheric model designed for high-resolution mesoscale
forecasting. A fully 3D semi-implicit scheme is implemented with second-order finite
differences in space. Both models implement semi-Lagrangian advection with overlaps.



2. The NEC SX-4M and Fujitsu VPP700

The multi-node NEC SX-4M is an SMP cluster type architecture with up to 32 proces-
sors per node and a maximum of 16 nodes interconnected via the proprietary NEC IXS
crossbar network with fibre channel interface. Each node executes an enhanced version
of UNIX System V with features such as resource sharing groups (RSG) to dedicate
resources to single or multi-node jobs. The total 8 Gbytes/sec IXS (bi-directional) band-
width is augmented by a direct memory-mapped addressing scheme between nodes [3].
Each CPU of the SX-4 contains a scalar unit and a vector unit. The vector processor is
based on low-power CMOS technology with a clock cycle time of 8ns (125MHz). Three
floating point formats are supported: IEEE 754, Cray, and IBM. The vector unit of each
processor consists of 8 parallel sets of 4 vector pipelines, 1 add/shift, 1 multiply, 1 divide,
and 1 logical. For each vector unit there are 8 64-bit vector arithmetic registers and 64
64-bit vector data registers used as temporary space. The peak performance of a concur-
rent vector add and vector multiply is 2 Gflops/sec and atmospheric codes can sustain 1
Gflops/sec or higher. Main Memory Unit (MMU) configurations for a node range from
512 Mbytes to 8 Gbytes of 15ns Synchronous Static Random Access Memory (SSRAM).
The maximum 8 Gbytes configuration comprises 32 banks of 256 Mbytes each, providing
memory bandwidths of 16 Gbytes/sec per processor. Supplementing main memory is
16 or 32 Gbytes of eXtended Memory Unit (XMU) built with 60ns Dynamic Random
Access Memory (DRAM) and having a 4 Gbyte/sec bandwidth. MPI/SX is based on a
port of the MPICH package by NEC’s C & C European Lab with the assistance of Rusty
Lusk and Bill Gropp from Argonne National Laboratory [3].

A processing element of the Fujitsu VPP700 also contains both a scalar and vector
unit. The vector unit consists of 8 functional units which can operate in parallel. The
peak performance of the vector unit is 2.2 Gflops/sec, whereas the scalar unit is a 100
Mflops/sec processor. Both 32 and 64-bit IEEE floating point formats are supported.
Each PE can be configured with up to 2 Gbytes of Synchronous Dynamic Random
Access Memory (SDRAM). A full copy of the 32-bit UNIX operating system kernel is
executed by each processor with 1.7 Gbytes available for programs and data. A 64-
bit operating system is planned for the next generation VPP architecture with up to
8 Gbytes of memory per PE. Processing elements are interconnected with a scalable
crossbar switching network, capable of 570 Mbytes/sec (bi-directional) point-to-point
transfer rates. MPI is implemented on top of the proprietary VPP message-passing
layer. Any processor can make I/O requests but only 11 of the 116 VPP700 PE’s at the
ECMWTF (the so-called I/O processors) are configured with disks.



3. Parallel Programming Models

Climate and ocean modeling groups at NCAR [5] and the University of Minnesota (6] have
identified and tested hybrid programming models for SMP architectures. Shared-memory
tasking mechanisms or threads can be applied for intra-node parallelism, whereas inter-
node communication is implemented with MPI. Coarse-grain tasks on an SX-4 node are
created with the pt_fork and pt_join primitives and loop-level parallelism in the form
of micro-tasking is specified through the inline compiler directive vdir pardo. A POSIX
threads compliant library pt_thread is also available. With the recent acceptance of
an OpenMP standard for shared-memory parallelism, it should now be possible to build
portable codes employing both MPI and auto-tasking. The MC2 model is discretised on
a Nx x Ny x Nz grid, where the number of points in the vertical direction is typically
one order of magnitude less than in the horizontal. A distributed-memory model of
computation is based on a domain decomposition across a Px x Py processor mesh. All
vertical loops in the dynamics and physics code are micro-tasked, allowing for a hybrid
combination with boundary exchanges implemented using MPI. The elliptic solver in
MC2 is a minimal residual Krylov iteration with line relaxation preconditioners (see
Skamarock et al. [7] and Thomas et al. [8]). To handle global data dependencies, a data
transposition strategy is implemented using MPI all-to-all communication. Fixed-size
halos are implemented for semi-Lagrangian advection.

The IFS forecast model is a global spectral model which can use either a full or reduced
Gaussian grid. In the case of a reduced grid, the number of grid points along a latitude
line decreases near the poles. Both Eulerian and semi-Lagrangian advection schemes are
available. A parallel domain decomposition is based on a latitude by longitude decompo-
sition in grid point, Fourier and spectral space where NPROC = NPROCA x NPROCB.
A data transposition strategy is implemented between each computational phase of a
time-step. A fixed overlap strategy is also implemented for the distributed-memory
implementation of semi-Lagrangian advection where the global maximum wind-speed
determines the halo size (see Dent and Mozdzynski [2]). The shared-memory version of
the model is still retained and was not sacrificed in order to build a distributed-memory
implementation. In fact, the IFS model can be run in a hybrid shared/distributed config-
uration. FFT’s are computed on all processors and are independent in both the vertical
and longitudinal directions. Likewise, the Legendre transforms are also executed on all
processors and are independent in the vertical and over spectral waves. Finally, the IFS
has been coded to perform effectively on both vector and RISC/cache architectures by
supporting a runtime parameter NPROMA which controls locality of reference.



4. Benchmark Results

We have benchmarked the full forecast configurations of the MC2 (adiabatic kernel +
RPN physics version 3.5) and IFS models at the CMC in Montreal and at the ECMWF
in Reading. The current CMC configuration consists of the operational machine ‘hirv’,
an SX-4/32 with 8 Gbyte MMU along with ‘yonaka’ (SX-4/16 + 4 GB MMU) and ‘asa’
(SX-4/16 + 8 GB MMU). The two SX-4/16 nodes can operate as an SX-4/32M cluster
and all three machines will be connected to the IXS crossbar in 1998. Four full nodes in an
SX-4/128M cluster should be in place by the year 2000 or 2001, with a peak performance
of 256 Gflops/sec. Given our results to date, it is reasonable to expect that 50% of peak
is possible on such a machine. The ECMWF VPP700 is currently configured with 116
PE’s, each containing 2 Gbytes of memory or 232 Gbytes in total.

The MC2 model is written in Fortran 77 with Cray POINTER extensions for dynamic
memory allocation. The code was compiled using 32-bit arithmetic on both the SX-4
and VPP700. Whereas the IBM floating point format was specified on the SX-4, 32-bit
IEEE arithmetic was used on the VPP700. The only compiler options specified to assist
in vectorisation were -pvctl noassume loopent=1000000. Extensive inline compiler di-
rectives such as wdir nodep are specified in the physics library due to dynamic memory
allocation. The SX-4 compiler is conservative and assumes both aliasing and recurrences
are present unless otherwise indicated. The vectorisation level on the SX-4 (scalar ver-
sus vector instructions) then usually exceeds 98%. Similar directives were specified to
the VPP700 Fortran 90 compiler frt. Multi-node SX-4 runs require a mpi.hosts file
containing the number of processes to launch on each node. In particular, the order of
processes launched from this file determines their rank in MPI_COMM_WORLD.

The IFS forecast model code is written in a subset of Fortran 90 with extensive use of
ALLOCATABLE arrays. The model code was compiled for 64-bit IEEE arithmetic on both
the SX-4 and VPP700 machines. In fact, this was our first experience at RPN/CMC
with the NEC Fortran 90 compiler. It was found to be far too slow for production usage
and would likely perform better as a cross-compiler similar to Fujitsu’s frtpx run on a
SGI/Cray Origin 2000 at the ECMWF. Vectorisation and performance of the IF'S code are
largely determined by the NAMELIST parameters NRPROMA for the radiation package and
NPROMA in the dynamics. In all tests we varied NPROCA and set NPROCB=1 [1]. Performance
data for the IFS RAPS 4.0 benchmark (T106L19, T213L31) and an MC2 run at 10km
resolution using a 512 x 432 x 41 grid (10 x At = 180sec) are presented at the end of
the paper. In both cases, multi-node performance is higher from 8 up to 32 PE’s on the
SX-4.



5. Discussion and Conclusions

For both the MC2 and IFS models, we encountered what might be best characterized as
a problem with ‘memory starved’ nodes. The SX-4 has 128 Mbytes of SSRAM memory
per Gflop of computing power, whereas the VPP700 has over 900 Mbytes of SDRAM
per Gflop, a factor of 7 more in terms of memory size. In the case of the SX-4, it
appears that 8 Gbytes of fast SSRAM may not be sufficient for 32 processors, each
operating at 1 Gflop/sec, in a single distributed-memory program. Since the SX-4 is
a ‘transition’ machine, designed to support both a traditional computing mix of single
threaded jobs and scalable multi-node applications, certain design compromises were
required. Future designs such as the follow-on SX-5 from NEC, or for that matter any
SMP cluster type architecture, must strike the right balance between the number of
processors per node and providing a memory hierarchy that supports the highest possible
sustained execution rate within a node. Shared-memory tasking mechanisms tend to
quickly saturate within a node unless very large grain tasks are used. For small problem
sizes, a hybrid mix of sub-domain boundary exchanges using MPI combined with micro-
tasking in the vertical direction can be efficient. However, we have always found that
a distributed-memory model of computation for both inter and intra-node parallelism
yields the highest performance and the transition from single to multi-node is seamless
across the NEC IXS crossbar switch with no degradation in performance. Moreover,
the performance across nodes was better than on a single node and this may be due to
memory contention.

Since the scalar units on both the SX-4 and VPP 700 are 20 to 100 times slower than
the vector units, scalar code is to be avoided at all costs. With 2 Gbytes of SDRAM
available per PE and likely 8 Gbytes in the next generation machine, memory on the VPP
700 is not a major issue. The slower SDRAM may affect the sustainable floating-point
execution rate of some scientific codes. Both the SX-4 and VPP700 processors have an
abundance of vector registers which the compiler can exploit to reduce memory traffic. We
have found in our benchmarks that the SX-4 processor performs slightly better on short
vector lengths than the VPP700. The performance of the VPP700 crossbar interconnect
for the IFS spectral model is now well documented, but also the particular communication
patterns of a grid point model (such as halo exchanges) are also well handled. The overall
performance of the IFS forecast model is slightly better on the VPP700 than the SX-4
(both single and multi-node) for the T213L31 benchmark as can be seen from Figure
1. However, the performance is very close and we believe that the gap could be bridged
with a modest tuning effort.
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sl PEs real user c¢p vector % vec par
y 141 80 78 155 99 975 73
y 242 71 52 203 129 97.0 65
y
y

444 42 29 227 140 965 36
12+4 28 16 255 150 96.0 18

Table 1: IFS T106L19 12 hr forecast timings (secs) on SX-4/32M cluster. SX-4/16, 4
GB MMU (yonaka) + SX-4/16, 8 GB MMU (asa). Semi-Lagrangian (y/n). Processing
Elements (PEs). Elapsed (real) time. CPU time (user). Total CPU time (cp). Total
vector time (vector). Vectorization ratio (% vec). Estimated parallel (par) time.

w
i

PEs real user cp vector % vec par
4 200 144 566 326 96.0 183
8 101 74 580 331 96.0 88
16 63 42 665 373 96.0 47
276 236 465 161 90.0 249
4 137 107 420 166 90.0 120
6+2 78 55 437 183 90.0 63
8 80 57 450 192 90.0 67
16 52 33 514 223 89.0 35

B pip|p Blw «w «
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Table 2: IFS T213L31 12 hr forecast timings (secs) on SX-4/32, 8 GB MMU (hiru) and
SX-4/32M cluster. SX-4/16, 4 GB MMU (yonaka) + SX-4/16, 8 GB MMU (asa).
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Parallelization of the ECMWF Integrated Forecasting System

The Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWEF)
consists of a large suite of software used primarily to produce a daily 10 day forecast. Key components of the IFS
include the processing of observations, a 4 dimensional variational assimilation scheme, and a 10 day forecast
model integration using a ~ 60km grid.

In the past, the parallelization of the IFS has concentrated on the forecast model component, and today this
continues to show near ideal scaling on many of the parallel computer systems available today. This model has
recently been enhanced to support parallel /O by using some new facilities provided in the MPI2 standard. Results
of scalability experiments using these MPI-1O facilities are compared with a parallel YO package developed at
ECMWF.

The processing of observations is an integral part of meteorological data assimilation. The volume of such
observational data is growing rapidly with the availability of new satellite data, and requires parallel processing to
keep run times to an acceptable level. Observations are stored in a highly compressed BUFR format, which is the
WMO standard format for the interchange of observation data. The encoding and decoding of BUFR format files is
inherently scalar in nature and does not benefit from vectorization. To resolve this a new and more flexible
observational data format has been developed at ECMWEF called Central Memory Array or CMA format. The
objective is to use CMA format where possible and to constrain the use of BUFR format to archive purposes. An
overview of how the IFS performs observation processing is described.

In the last year, ECMWF has introduced a new data assimilation system based cn the 4D-Variational analysis
method. This method involves the use of adjoint and tangent linear forecast models, and minimization of global cost
functions based on observational information and background forecast field information. This method is
computationally intensive and requires parallel processing in order to meet time critical requirements. Further,
issues of load balance arise from the distribution and cost of processing observations. This paper presents an
overview of these issues and how they are resolved, together with performance data from the FUIITSU VPP700
system at ECMWF.
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Abstract

CCCma operates spectral atmospheric general circulation models on the super computer
system at the Canadian Meteorological Centre (CMC) in Dorval, Quebec. This system
includes a multi-node NEC SX-4 Symmetric Multiprocessor (SMP). The nodes are made
of vector-parallel platform with 4 to 8 GB of central memory and 16 to 32 CMOS-based
vector processors, each with a peak performance of 2 Gigaflops. Presently, the NEC SX-4
cluster at CMC has one 32-processor node (SX-4/32) and two 16-processor nodes (SX-4/
16).

An older version of the model (GCM2) is used in CCCma’s coupled climate model, which
includes atmosphere, ocean and dynamical sea-ice components. GCM2 operates at “T32”
resolution in the horizontal and has 10 levels in the vertical. A newer version (GCM3)
operates at T47 or T63 resolution in the horizontal and has 32 levels in the vertical. GCM3
enjoys a number of improvements over GCM2, including a double transform methodol-
ogy, optimal topography to reduce Gibbsian ripples, a new deep convection scheme,
improved radiation code, a new land surface scheme (CLASS) and optionally, a semi-
Lagrangian treatment of tracers.

We will describe how we have parallelized GCM2 and GCM3 and will report on how we
took advantage of the existing code design to get satisfactory performance with the least
effort in the context of a coarse grain parallelization on an SMP machine. Diverse strate-
gies concerning the domain decomposition, memory allocation, spectral transform, load
balance, and synchronizations will be presented.
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1 Introduction

One of the major roles of the CCCma is to help Canadian policy-makers by providing sci-
entifically-based climate simulations (Boer et al.[1], see also the CCCma web site for
more information on the centre: http://www.cccma.bc.ec.gc.ca). To pursue this success-
fully, the main component of the coupled climate model, namely the Atmospheric General
Circulation Model (AGCM) has been improved constantly since it was originally devel-
oped 20 years ago.

The insatiable need for higher spatial and time resolution, and the increasing complexity
of the physical processes represented in the model have continuously pushed the demand
for more computing power. To cope with that, the model code architecture has had to be
optimized many times in the past. For instance, in the early years of development, main
memory was a scarce resource so strategies such as domain decomposition, which allowed
partial processing of the computational grid in memory, were adopted. Later, with the
acquisition of a vector machine (CRAY-1) the model code had to be vectorized and the
vector lengths became another constraint to achieve high performance. Nowadays, the
availability of a Symmetric Multiprocessor machine (NEC SX-4) calls for code parallel-
ization to meet a realistic turnaround time for the next generation of climate simulations.

When planning climate simulations for production mode, some factors need to be payed
attention to and dealt with such as:

« The available computer resources consisting of, cpu time, central memory, disk mem-
ory and archival storage space.

« Spatial and time resolutions at which the simulation is performed. Larger grid point
density and the smaller timestep (i.e. more frequent computations) theoretically lead to
better results.

e Deadlines for submitting simulated data, for example, to meet international commit-
ments.

 Length of the coupled model simulation(s), typically 200 years or more.

At CCCma, we aim for fully coupled simulations that can be produced in 3 months. Simu-
lations typically cover 2 centuries. This requires roughly 2 years of simulation per real day
or 2 months/real hour. For coupled simulations, the work includes the AGCM, the Ocean
General Circulation Model (OGCM), the coupling mechanism and data dumping to a
mass storage system. The extensive IO bound diagnostics of the generated climate data
are performed concurrently on the front-end (SGI Origin 2000) server.
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The first Canadian fully coupled model (Flato et al.[2]) uses the second generation AGCM
known as GCM2 (see McFarlane et al. [3]). The second fully coupled model will use a
new AGCM called GCM3. As with GCM2, GCM3 is a spectral model but its horizontal
resolution has been upgraded from T32 to T47 (optionally T63). In the vertical, the num-
ber of levels has been increased from 10 to 32. Besides its higher resolution it enjoys a
number of improvements over GCM2, including a double transform methodology, optimal
topography (Holzer [4]), a new deep convection scheme (Zang and McFarlane[5]), an
improved radiation code, a new land surface scheme (CLASS) and optionally, a semi-
Lagrangian treatment of tracers.

These improvements come at a cost:

cpu time/simulated day

GCM2 T32 30 sec
GCM3 T47 186 sec

For serial code on a single processor these numbers are close to the wallclock time. To
meet the turnaround requirement for long climate simulations, GCM3 had to be parallel-
ized to make use of the full potential of the computing system at the Canadian Meteoro-
logical Centre (CMC) in Dorval, Quebec on which production runs are performed. This
system includes a multi-node NEC SX-4 Symmetric Multiprocessor (SMP). The nodes are
made of vector-parallel platform with 4 to 8 GB of central memory and 16 to 32 CMOS-
based vector processors, each with a peak performance of 2 Gigaflops. At the present
stage of the parallelization development reported here, only a maximum of 16 processors
of a single 32-processor node (NEC-SX/32) has been used.

2 Implementation strategies

It was decided to use the NEC multi-tasking capabilities [6] to implement parallelism in
the code. We chose GCM2 to start with because it was the production model at that time
and any speedup would have been immediately beneficial. Also, the GCM2 code design
was much simpler than the developmental model GCM3. The CCCma AGCM:s are typi-
cal Eulerian spectral models. However, even though we call them spectral models, more
than 97% of the work is done in the physical domain, i.e. on a grid. The advantage of the
spectral methodology is that horizontal derivatives are computed exactly in spectral space,
leaving the computations column-independent on the dynamics grid and avoiding the need
for communication between columns. The physics computations are also done in a col-
umn-independent manner. Therefore, it was obvious to parallelize first on the computation
grids, and then if needed on the remaining 3% which includes the linear spectral computa-
tions, I/O, time filtering, etc..

The task of parallelization of a model that has evolved over 20 years without major re-
writing was not trivial at first. Fortunately, because early programmers had designed clever
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coding strategies to deal with very limited central memory, parts of the model code were
already in an ideal state for parallelization. One these strategies was to use a latitude loop
to process one latitude at a time instead of loading and computing the full grid all at once.
This methodology is also called memory window management. The obvious thing to do
first was to take advantage of this memory window management for the distribution of
work among the processor elements (PE).

Once we decided that coarse-grain parallelization could be easily implemented in the
existing code (which already had domain decomposition built-in), we analyzed the code to
locate where synchronization had to be imposed to get reproducibility for any number of
PEs given a domain decomposition. We found 2 places that needed attention, both having
to do with global summations. The first one involved the total precipitable water and the
total tracer amount. The second was in the last operation of the Legendre transform from
grid to spectral space. We shall specifically stress this last point in the next section.

One of the targets we focused on when we began the implementation was to get bit-by-bit
reproducibility between the original code and the revised one. The researchers were not
willing to continue ongoing runs with a multi-tasked model which would not give the
same answer. Furthermore, a multi-tasked version which would give the exact same
answer would be the proof that the programmer had not introduced flaws. Researchers
were more willing to accept different answers for the next frozen version (GCM3) if that
allowed for a better speedup. They just asked that the multi-tasked GCM3 yield the same
climate from a statistical point of view compared to the original version. To get reproduc-
ibility, it was important to identify the memory space (COMMON blocks) that must be
private to each task so they do not overwrite each other.

GCM2

The GCM2 was frozen in 1992, but a major optimization to increase the vector lengths for
better efficiency has been implemented since. This was done by chaining alternating north
and south hemispheric latitudes and made use of symmetrical properties to speedup the
Legendre transform. A benefit of this north-south coupling from a multi-tasking point of
view is that it provides a first order load balance among the chained latitude sets. In effect,
this mixing of latitudes from both hemispheres gives chunks of work which contain physi-
cal processes from various parts of the globe. Another advantage of this latitude chaining
mechanism is the possibility of getting an exact multiple of the optimum vector length for
the NEC-SX4 vector registers which hold 256 eight-byte elements. Figure 1 shows the
domain for a 96x48 grid points decomposed in 12 subdomains for 6 PEs.

Figure 2 shows the so-cailed latitude loop for the original (sequential) GCM2. If using the
domain decomposition of Figure 1, the iteration is done sequentially 6 times and just 1/6
of the grid is needed in memory. Figure 3 shows how the concurrency can take place in
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that loop which, as said previously, represents more than 97% of total cpu time. Essen-
tially everything is done in parallel with one major exception being the Gaussian quadra-
ture in the forward Legendre transform. Fortunately this step is one of the last ones of the
forward spectral transform and explicit synchronization using NEC multi-tasking func-
tions can be used to maintain the order of the summation of the Legendre transform. The
bad side effect of this imposed order is an implicit sequential section in the computational
flow. The management of the memory for GCM2 was handled by using NEC f77sx com-
piler directives (*PDIR TASKLOCAL(/xxx/) on COMMON blocks. These were easy to
implement once the locality vs. the globality of the data was determined.

Concerning the issue of giving the exact bit-by-bit same answer for the GCM2 version, we
first re-compiled with the multi-tasking switch turned on but without any changes in the
code. To our big surprise the answer was not the same. It appeared that the code optimiza-
tion of one expression was not done anymore and thus a one bit difference showed up after
60 timesteps. We finally pinpointed the problem and optimized the code by hand. Then the
same answer was obtained and we were set to start the multi-tasking implementation.

GCM3

Apart from its improved physics and higher resolution, the GCM3 computational flow is
fundamentally different from GCM2. The new GCM3 make uses of a process-splitting
marching scheme where the physics is applied as a correction to the updated dynamical
variables at each timestep. In GCM2, the total tendency terms were made of the non-linear
dynamics terms added to the physics tendencies lagged by one timestep. Moreover, these
physics and the non-linear dynamics tendencies were computed on the same grid. With
GCM3, they are performed on different grids having different sizes. This is what we call
the double transform. The consequence for the implementation of the parallelization is
that, 2 latitude loops instead of 1 must be parallelized, each having a potentially different
domain decomposition (Fig. 4).

The explicit synchronization in GCM?2 for the Legendre transform was removed by pro-
viding the tasks private memory space to put their contributions to the global spectral
fields, the final summation now being done after each parallel latitude loop. Again here,
the clever implementation of the latitude loop many years ago helps to implement that
algorithm. In effect, the forward Legendre transform was designed to be executed almost
totally within a latitude set without elements needed from the other latitudes on the trans-
form grid. The individual contributions are only required for the final summation. This
was done incrementally as each latitude set is processed in the latitude loop. In other
words, using this method, no transpose is needed in the Fourier domain. Mathematically
the forward spectral transform is written as,

NLAT 1 NLON -1 Ik

j=1 i=0
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Where A(x,, u,) are the grid point values, P’:( p,j) is the (normalized) associated Leg-

endre function and W j) are the Gaussian weights, and i and j are the longitude and lat-

itude indices respectively. NLON is the total number of longitudes and NLAT the total
number of longitudes.

The transform is usually performed in 2 steps

1-Forward Fourier transform: (grid->Fourier coef)

1 NLON -1 Imh

m —{mh,;

A (uj) = NLow z A(X,-,uj)e 2
i=0

2-Forward Legendre transform: (Fourier coef-> spectral coef)

NLAT
m m m
Ay = Y WapP A" o) ©
j=1
NLAT
. . . . m, . m m, .
This can be re-written with partial sums S, (J) : A = 2 S, () 4)
j=1
1 NLON -1 Im
where: S, (/) = 5ion 2 WwoPy At npe )
i=0

The advantage of this is that each PE can work independently on its own latitude circle to

m, .
fill up its own spectral triangle S, (J) .

When working on a set of chained latitude circles like in Fig. 1, (4) and (5) become:
NSET

m m (6)
Ay =Y Sk
k=1

1 NLON -1 I
HOENEDY {m > W(uj)P:,n(uj)A(ki,uj)e } (7)
j e set(k) i=0
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m
Where S n (k) represents the partial sum for a given set k. When running in parallel, each

PE is associated with a given k and evaluates (7) independently. The final summation of
each contribution is done serially after the parallel loop.

This method is described in Worley and Drake [7,8] as too expensive in terms of memory,
because of the duplication of the spectral arrays, and in terms of communication time on a
distributed memory machine. We found that for a shared memory machine like the NEC-
SX4 and with the use of dynamic memory allocation these arguments fade away. See also
[9] and [10] for more information on parallel algorithm for spectral transform.

With the double transform, the first parallel section of the code, namely the non-linear
dynamics, induced no load imbalance. On the other hand, the physics can still produce a
load imbalance especially between the PE working at the equator and the one working at
the poles since very different physical processes take place in these regions, e.g. convec-
tion.

Having now no explicit synchronization in the latitude loop and because much more work
is done in the more expensive GCM3 physics, 98.5% of the total work in this version can
potentially be executed in parallel. But because of some physics load imbalance and
because some serial time is needed at the beginning of each latitude loop to obtain the PEs
and to get them working on their task, the effective amount of work done in parallel is
about 97% for T47 when using 6 PEs.

For GCM3, we still use the compiler directives (*PDIR TASKLOCAL(/xxx/)) for local
common blocks but we moved to dynamic memory allocation using integer pointers for
the biggest work arrays. Tests were done showing that the replacement of the compiler
directives by the use of dynamic memory allocation yielded up to 25% more speedup. In
addition, when the tasks were generated for a given latitude loop, the memory for all
declared tasklocal commons in the code was allocated on the stack, not just the memory
used in that latitude loop.

3 Performance results

All performance tests were done on the operational node which is used not only for model
development and climate production runs, but also by the Canadian Meteorological Centre
(CMC) for weather forecast production. This node has 32 PEs available. Considering the
other users on the machine and the fact that we had climate production runs, 6 to 16 PEs
were used. The results are for one model simulated month.
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GCM2

For GCM2, the spectral truncation is T32, the physics/dynamics grid is 96x48, the number
of vertical levels is 10 and the timestep is 20 minutes. Table 1 gives a summary of the per-
formance as a function of the number of PEs. A speedup of 4.2 is obtained with 6 PEs.

GCM3

For GCM3 two sets of tests are shown. The first is at T47 with physics grid of 96x48 and
dynamics grid of 144x72. The second is at T63 with a physics grid of 128x64 and a
dynamics grid of 192x96. The timesteps are respectively 20 and 15 minutes. Both have 32
vertical levels. Tables 2 and 3 summarize performance for these 2 resolutions. At T47 and
with 6 PEs, the execution time is 18 minutes which represents a speedup or 5.2 . At T63
and with 16 PEs, the execution time is 22 minutes and the speedup 10.2 .

In the above tests, the shortwave (sw) radiation computations were done every hour. When
they were done at each timestep, the T47-6 PEs version ran at 4 Gflops taking 26 minutes
per month and the T63-16 PEs version ran at 8.5 Gflops taking 27.7 minutes per month.
Considering that the climate with the sw computed at each hour is very similar to the one
computed at each timestep, it has been decided to go with the less expensive alternative,
i.e., once an hour.

Conclusion

Substantial speedups have been achieved without rewriting the entire AGCM code. This
will help us to perform our long term climate simulations within the existing constraints
described in the introduction. In effect, the wallclock time for GCM3 T47 decreases from
186 sec/day to 36 sec/day using 6 PEs. With this performance, the goal of 2 simulated
months per hour is easily met. At T63, 16 PEs, the same time target is also met. However,
in a coupled mode, the OGCM also requires a substantial computational effort. We are
about to start multi-tasking the OGCM code and are developing a flux coupler using MPI
communication capabilities.

Speedups shown in table 2 and table 3 do not scale very well for a relatively large number
of PEs. Considering that a single node SX4 has a maximum of 32 PEs and that we usually
run at least 2 concurrent production runs on it, this kind of scalability is acceptable. Any-
way, a speedup of 10 for GCM3 at T63 is something that makes model users very happy!
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Fig. 1. Domain decomposition of a 96x48 grid for 6 processor elements (PE-1 to
PE-6). Each PE shares part of each hemisphere. Each PE performs computations on
vectors having optimum multiple length of 256 elements. This is done by chaining
alternatively north and south a total of 8 latitude circles of 96 grid points each.

Do loop sequentially for each latitude set.

Y

SPECTRAL (GLOBAL)

SPEC -> GRID (LAT)

PHYSICS
DYNAMICS

'

l
GRID (LAT) -> SPEC

SPECTRAL (GLOBAL)

Fig. 2. Original so-called latitude loop for GCM2. The time goes downward begin-
ning with the inverse spectral transform at the top. The forward transform is at the
bottom. One latitude set is processed at a time. For the typical 96x48 grid with 8
chained latitudes, the sequence is repeated 6 times.
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Fig. 3. As in Fig. 2 but with 6 PEs working concurrently on their own latitude set. The
heavy line, where the arrows converge, represents the area where explicit synchronization
is imposed. Note also that, for GCM2 considered here, the physics and non-linear dyna-
mics are done on the same grid.
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Fig. 4 Computational flow for a GCM3 timestep showing the 2 paralle] latitude loops.
The first one is for the non-linear dynamics and the second for the physics. SPEC(#) indi-
cates private spectral arrays. This diagram is for 4 PEs on the dynamics grid and 6 PEs
on the physics grid.The final summations are done after each corresponding latitude loop
so that no explicit synchronization is done inside the parallel latitude loops.
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Table 1: Performance for GCM2 T32

Mem Exec CPU Gflops Mflops
P Time | Time p (avg/ | Speedup | Efficiency
(mb) . : (total)
(min) (min) proc)
1 50 15.3 15 0.530 530 1
2 68 8.5 15.5 0.955 478 1.8 90%
3 83 6.0 15.7 1.341 447 2.5 84%
6 128 3.7 16 2.215 369 42 70%
Table 2: Performance for GCM3 T47
Exec CPU Mflops
PE Mem Time Time Gflops (avg/ Speedup | Efficiency
(mb) . . (total)
(min) (min) proc)
1 180 93 93 0.71 710 1
2 322 49 94 1.35 706 1.9 95%
3 488 34 95 1.95 702 2.8 93%
6 833 18 96 3.62 693 52 86%
Table 3: Performance for GCM3 T63
Exec CPU Mflops
PE Mem Time Time Gtlops (avg/ Speedup | Efficiency
(mb) : . (total)
(min) (min) proc)
1 168 224 224 0.66 660 1
4 441 63 229 2.24 560 3.5 89%
8 830 35 234 421 525 6.4 80%
16 | 1490 22 238 6.68 417 10.2 63%
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1. Introduction

SKYHI is a grid-point atmospheric general circulation model which was developed at the
NOAA Geophysical Fluid Dynamics Laboratory nearly twenty years ago (Fels et al.
[1]).The model is global, and extends in the vertical from the ground to about 80 km.
SKYHI has been used to investigate various troposheric, stratospheric and mesospheric
phenomena, including sudden stratospheric warmings, the quasi-biennial oscillation,
ozone depletion, gravity wave-mean flow interactions and chemical and tracer transport
problems. A concise description of the model equations, numerics and physics may be
found in Jones et al. [2]; a more detailed description is found in Hamilton et al. [3].

Jones et al. [2] describe changes made to the model in order to port it to the Thinking
Machines Corporation CM-5 machine at Los Alamos National Laboratory. This paper
concentrates on changes made to the model that significantly enhance the ability of the
SKYHI user to quickly and easily modify the model code to initiate, run and analyze new
scientific experiments, and to attach new features to the model with a minimum of diffi-
culty. Section 2 discusses the development of the generic SKYHI code in which the effi-
cient use of human resources is balanced with the efficient use of machine resources.
Section 3 defines the basic structure of SKYHI and the current meaning of “modularity”
as used by SKYHI. In section 4, two of the important new user-friendly “modules” of
SKYHI are presented, along with examples of their use. Section 5 discusses the parallel
performance and scaling of SKYHI on CRAY PVP shared memory and CRAY T3E dis-
tributed memory machines, while Section 6 serves as a summary.

2. Balanced optimization

The SKYHI model code that existed in 1990 was the result of many people’s efforts over
many years and several machines to produce a code which would run using a minimum
amount of CP time, memory and I /O time. As a result, the relationship between the model
code and the analytical expressions it represents was difficult to see; model variables were
often defined to minimize arithmetic operations, rather than to be physically- or numeri-
cally-meaningful quantities. Memory usage was minimized by implicit and explicit equiv-
alencing; certain common blocks were used to provide the current functionality of the
stack. Specific coding practices needed for performance on previous platforms were still
in place, even though they were no longer needed. The result was a model which could be
run with scientifically-meaningful horizontal resolution on a machine with limited central
memory, but which was difficult to modify and often failed in unexpected ways when dis-
turbed, and in which code for specific model processes was scattered across many subrou-
tines.

At the same time, the shrinking budget for basic research and the desire to reduce the Fed-
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eral workforce was shrinking the number of GFDL programmers and scientists available
to manage the code and to run scientific experiments. To take up the slack, more visiting
scientists were being invited to GFDL, usually for periods of a few years. In order for
these people to make productive use of their time at GFDL, it was essential that they
quickly become able to use the model in their studies, and not spend a lot of time attempt-
ing to attach their experiment to SKYHI. The existing code structure of SKYHI made this
process difficult.

With the coming of the CRI YMP machine in 1990, the available computing power at
GFDL increased significantly. This allowed the “machine de-optimization” and “user opti-
mization” of the SKYHI code to begin, without resulting in a reduction in model through-
put for the SKYHI user community. Code constructs which may have been machine
efficient at some point in the past but which were difficult for users to understand and
modify correctly were replaced with more easily understood code, the first step toward
balanced optimization.

Balanced optimization attempts to optimize not only the use of machine resources, but
also the human resources required in scientific investigations. Fig. 1 is a schematic repre-
sentation of some of the important factors that must be considered in a research code
designed to be used by a variety of users. The ideal code would be optimal in all of these
user and machine resource utilizations; since no real code is ideal, it is desirable to pro-
duce a code in which none of these features is out-of-balance with the others. Typically
these features compete with each other; for example, a code which is highly I/O efficient
is likely to be less memory efficient than it could be if the /O were not so efficient. The
strategy then is to produce a generic production code in which there exists a balance
between these features.

This generic code is the form that is maintained and made available to users. It is written
so that it allows easy access to the model to a broad spectrum of users with diverse
research interests, each of whom may wish to view different parts of the model as a black
box, and who may not need or want all of the features that are provided. Individual users
then optimize the generic code as they must in order to reach their scientific goals.

3. The structure of SKYHI and modularity

Figure 2 shows the four basic sections of the SKYHI model. The model’s initialization
phase consists of calling subroutines to set up tables, initialize constants, read input data
—- all the things that are only done once during a model run. After completion, the time-
step loop is entered. Some of the calculations in this loop are not a function of gridpoint,
but only a function of the time or timestep. This is called the time-dependent phase. After
it is executed, the chunk loop is entered. This loop extends over the model domain, which
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is broken up into rectangular portions in the horizontal, referred to as chunks. These
chunks may be executed either sequentially or in parallel. Within this prognostic section
the model equations are time-integrated, contributions from the chunk to any integrands
being calculated are computed, and any data from the chunk which are needed in archive
files are written. After the domain chunks are processed, the processing of global integrals
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is done in the diagnostic code section to complete the time step.

Part of the ongoing effort to make SKYHI more user-friendly is the separation of the
source code into “‘model” code and a number of modules. In SKYHI at this time, a module
is defined simply as code needed to perform a specific model function which has been iso-
lated from the rest of the source. That part of the code not yet contained within a module is
referred to as the “model”. The following guidelines must be met for a portion of code to
be called a module in SKYHI:

1) No “model” include files, common blocks or subroutines may appear in any module.
2) No module include files, common blocks or subroutines may appear in the “model”.
3) All communication between “model” and a module must be through argument lists.

4) Module to module communication must occur by going through the “model”.

5) Modules may have an interface to the “model” in each model section defined above.

These conditions assure that the communication between model and module is explicitly
defined, via a subroutine call argument list. It makes it obvious to a user what model vari-
ables must be supplied to the module, and prevents the inadvertent modification of model
variables that could be brought into a module via a model include file or common block.
Experience has indicated that many argument lists may be shortened by some code reorga-
nization, which also invariably produces a more understandable and more modular code.

At the moment, SKYHI contains several physics modules that follow these coding guide-
lines. These include a radiation package, a cloud package, a surface albedo package, an
astronomy package and an ozone package. These modules have been carved out of the
previous SKYHI radiation code by isolating the code which is related to these processes.
A modular structure allows easy implementation of alternative parameterizations and also
allows the output from these modules to be passed back to the model and then used as
input to other parameterizations, e.g., the stratospheric chemistry package associated with
SKYHI requires astronomy package output. More processes will be pulled out of the
“model” and made into “modules” as time permits.

Several modules have been added to SKYHI recently, following the coding guidelines pre-
sented above. These added modules include two optional tracer transport packages (advec-
tion plus subgrid-scale diffusion) and a particle trajectory package. An interface for each
module was created in each of the four model sections (initialization, time-dependent,
prognostic, diagnostic), and the package code which should be executed in each model
section is accessed through this interface. As time allows, the modules in SKYHI will be
made compliant with the Fortran 90 module construct, further increasing the ease with
which new Fortran 90 code written by others may be incorporated into SKYHI.
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Figure 2. The basic structure of the SKYHI model.

4. The archiving module and the user variable module

Two new higher-level modules have been created in SKYHI. These modules handle two
functions which are essential for users who must significantly alter the existing code for
their experiments. Both of these features help to isolate the user’s code from the SKYHI
model code and so reduce the chances of the user inadvertently modifying the model code.

a) The archiving module

The archiving module controls the writing of data files that will be analyzed offline. Five
file types are currently recognized: restart, point data, column data, slab data and reduced
data. A restart file is written at the end of a job, and must contain the time-dependent vari-
able fields and any other data that are necessary to allow the model to be started again at a
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later time, as though it had never been halted. Point data, column data and slab data files
contain the desired model variables at a specified set of individual grid points, grid col-
umns or grid planes, respectively. In the limit, the slab data files will cover the entire
model domain. Reduced data files contain non-gridded data; they may contain integrals
over the globe or some portion of it, or any other grid-independent data set .

All of these files (with the exception of the restart file) may capture either a “snapshot” of
the data or may be used to contain some type of time-averaged representation of the data.
Standard forms for each of the five file types are provided with the model code as a tem-
plate to be used in creating customized files. Three standard forms are provided for each
file type: the form for the standard version of the file; the form which will produce a time-
averaged standard version of the file, and a form which may be customized by the user to
provide whatever set of variables is desired, either as a snapshot or as a time-average.

User control of the archive files is provided through a combination of pre-processor
options, namelist variables and model parameters. Pre-processor variables define how
many file forms of each file type are present in the code. If the user adds code for a new
file form, then the variable for that file type would be increased from the default value. If
the model is to be integrated without writing any files of a given type, then the variable for
that type is set to zero, and all the code and storage associated with the data files of that
type will be removed from the model source.

If any data files for a given file form are to be written, then the user must specify namelist
variables that define the temporal characteristics for each of the file forms of that file type.
These variables and their use are described in Appendix A.

Data for each of the file forms of the grid-dependent file types is collected in an array
dimensioned by (i, j, n) where i and j refer to the horizontal grid points in x and y respec-
tively, and n is the sum over all variables of the number of k levels at which each variable
is to be written. The beginning and ending spatial location indices of these arrays and the
value of n for a given file form are specified as parameters in the model code.

Appendix B defines the recommended procedure for a user to follow when using the
archiving module.This procedure has been successfully followed by SKYHI users. The
naming conventions and supplied code allow even an inexperienced user to successfully
create new archive file forms by making it evident what code changes must be made to the
default code to create a new file form. Equivalent variables for different file types have
names which differ only by the unique letter associated with that file type. Equivalent vari-
ables for different file forms of a given file type have names which differ only by the file
form number, which is (are) the last digit(s) in the variable name. For example, the param-
eter defining the record length of the data record is I/RECLENa where ¢ is the file type (1,
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t, s, h, or i) and a is the file form number. Thus the variable names are very recognizable,
and contain the file type and file form information within them. The creation of control
code for new file forms simply requires the duplication of existing supplied code, the loca-
tion of the file-form-specific variable names, all of which contain the file form number,
and the replacement of the old file form number with the new in these variable names.

The archiving package has also been incorporated into the GFDL Limited-Area Non-
hydrostatic model (LAN) without difficulty, and should be insertable into any atmospheric
model which has the proper interfaces. New and useful Fortran 90 constructs will soon be
incorporated into the package and any problems or lack of clarity reported by users will
continue to be addressed. Additional capabilities are also planned, including the ability to
create time-averaged files that span jobs.

b) The user variable module

The user variable module allows the user to easily add variables to the model. The model
contains an array 0o0o (ist:iend, jst:jend, kst:kend, n, m), where the first three dimensions
are the (i,j,k) spatial indices, n is the number of 000 variables, and m is the time level
index, indicating lag, mid or lead time. This variable is available to the user to contain n
variables of his choosing. If no user supplied variables are desired, then a preprocessor
option is set, and all the code and storage associated with this variable is removed from the
code. When user-defined variables are desired, model-supplied code will handle all
aspects of their integration except for the calculation of the specific physics-chemistry-
source-sink terms relevant to the variable in question, which obviously must be supplied
by the user.

These user variables may be fully prognostic, semi-prognostic, or diagnostic. Fully prog-
nostic variables have a time tendency resulting from transport and may also contain phys-
ics-chemistry-source-sink terms. The transport is handled by the model, as specified by
the user from a series of options that are offered; there is no need for the user to provide
code to transport these variables, unless a scheme is desired that is not offered by the
model. Semi-prognostic variables have a time tendency resulting from source / sink terms,
but are not transported. Diagnostic variables are defined on the basis of other conditions,
and do not have an explicit time tendency equation. These variables may be integrated
with a timestep either smaller or larger than the model timestep, if desired.

The user must customize the general user variables so that they become the variables that
are desired. The model contains the chemical species nitrous oxide as a sample ooo vari-
able, the treatment of which the user can follow for his own variables. Interfaces between
the model and user variable module are provided in each model section; the user must
determine the variables that will become the argument list between model and module.
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Different types of variables have been coupled with SKYHI using the user variable code
block. The experience gained in coupling these diverse types of variables to SKYHI has
produced a more general structure of the user variable block, so that all of these variable
types, each with their own special requirements, may be handled properly. The result is a
more robust module, one that is more likely to be able to handle the next set of variables
thrown at it than it was previously.

Several different uses have been made of the user variables in a chemistry context. The
investigation of tracer transport by different transport schemes has been done very neatly
by setting up an experiment with several initially identical copies of a given species, each
of which is integrated with a different transport scheme, all within the same model run.
The data for all the schemes are then present in the same data files, simplifying the analy-
sis effort. A stratospheric chemistry package with thirty-seven chemical species has been
attached to SKYHI and run without difficulty. In this case, some variables are prognostic,
some semi-prognostic, some diagnostic, and some may be prognostic or diagnostic,
dependent on the time of day. The option to have variables change between prognostic and
diagnostic was not originally present and required a generalization to the original code,
which was successfully done.

Experiments that have investigated the vertical diffusion scheme in SKYHI have
employed a simple radon tracer with a surface source. Multiple versions of the diffusion
scheme may be tested in the same job by starting multiple identical copies of the tracer,
each as a different user tracer variable which has a different diffusion scheme. In such a
case the model needs to be run only once in order to compare n different diffusion formu-
lations, rather than n times.

Another use of the user variables has been with a cloud ice parameterization scheme. Here
there was a need for twenty-three diagnostic variables, and the presence of the user vari-
able block allowed the easy inclusion of that many new variables. It is anticipated that
cloud microphysics and atmospheric aerosols may soon be examined in SKYHI and it is
likely that both of these variable sets will be handled within the user variable block.

The user variable module will also provide the flexibility needed to handle alternative col-
umn physics packages that are available as options within the model. Different parameter-
izations of a given process will require different variables to be communicated between
the model and the package, and so a different interface could be needed for each package.
However, using the user variable array ooo will allow each package to communicate with
the model through the same interface, thus simplifying the source code.
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Section 5. Performance on parallel systems

One of the optimization factors shown in Fig. 1 is the ability for code to run in production
mode on multiple processors. This feature is essential to avoid limiting the numerical
experiments which may be undertaken and the platforms upon which the model can be
run.

Two major changes were necessary to allow the code, which had been running on a single

processor, to be run on multiple CPUs of the Cray PVP machine. The original unitasked
code executed the model one latitude row at a time (the chunk loop of Fig. 2) because of
memory constraints, marching from south to north, providing a natural coarse-grained,
one-dimensional data decomposition scheme for parallel execution. In unitasked mode,
this decomposition allowed the center and northern row variable fields and the fluxes that
had been calculated at the northern boundary of a grid row to be saved and used as the
southern and center row variable fields and southern boundary flux of the next row. Thus
each new row required only the reading of the new northern row of data from disk and the
calculation of the northern boundary fluxes. However,with multitasked execution, each
processor must calculate fluxes at both boundaries, and read all the data it needs from disc,
since it is not certain that it will have the data from the previous row. These two changes
result in a 10-15% increase in CP time for SKYHI, but allow the model to be run on par-
allel systems.

The scaling performance of SKYHI on the GFDL CRI T932 machine during a dedicated
test time is summarized in Table 1 for both one degree latitude (N90) and for one-third
degree latitude (N270) resolution. These numbers were obtained by running the model for
several timesteps without archiving any data, and do not include the time spent in the ini-
tialization section of the model, which is primarily spent reading the initial data and is not
parallelized. It is seen that scaling for both resolutions deteriorates above 9 processors.
This decay reflects the single-threaded nature of access to the model data stored on the
SSD, meaning that as the number of processors increases, processors must wait longer to
get the data they need. A further degradation of performance occurs on 24 CPUs, which
presents an inherent load balancing problem for 180 or 540 chunks.

Thus, on the Cray PVP machine, a one-dimensional domain decomposition is adequate,
since the number of processors which can be efficiently used on a problem will be limited
by the single-threaded SSD access time before the load balancing problem resulting from
the limited number of latitude rows becomes important. Currently only the one-third
degree latitude SKYHI experiment is being run multitasked in production mode on the
GFDL T932; lower resolution runs are run unitasked to take advantage of the savings dis-
cussed above. The one-third degree experiment is multitasked 4 ways; on 4 processors the
code is still parallel efficient and the machine resource usage is balanced. The model at
this resolution requires 12% of the total system memory and 15% of the total system SSD,
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so that 4 processors (15% of the total of 26) is reasonable.

When SKYHI was ported to the LANL TMC CM-5 machine (Jones et al. [2]), however, it
was necessary to use a two-dimensional domain decomposition. The major longitudinal
dependence which was encountered was the polar Fourier filter, which required extensive
communication of data between processors, and resulted in a high computational price.
Jones et al. [2] discuss the performance of SKYHI on the CM5 machine and the reasons

for it.

Table 1: SKYHI PVP scaling characteristics

Resolution I:;T:;gﬁsf Wa:ilrflLOCk Scaling El;ﬁaz?ifclzy
(seconds)
N90 1 334 - -
(unitasked)
N90 1 369 1.00 1.000
N90O 3 125 2.95 0.983
NSO 9 44 8.39 0.932
N90 18 26 14.19 0.783
N90 24 24 15.38 0.641
N270 1 267 - -
(unitasked)

N270 1 308 1.00 1.000
N270 3 104 2.96 0.987
N270 9 35 8.80 0.978
N270 18 23 13.39 0.744
N270 24 23 13.39 0.558

The SKYHI code running on the Cray PVP machine has also been modified to run on the
CRI T3E distributed memory machine. Pre-processor options are used to select either the
shared memory or distributed memory version of the code. These code versions differ by
about 1200 lines, primarily in code involving the T3E domain decomposition and assign-
ment of data to processors, the storage of tau file data in local memory rather than on disc,
communication of data between processors (shmem calls), and the data archiving process.
The code remains that which has been optimized for the vector machine; no specific T3E
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optimizations have been made. Raw performance of this code on the T3E is about 36
Mflops/pe, compared to 500 Mflops on a single T90 CPU.

The major source of load imbalance in SKYHI is the polar Fourier filter. All latitude rows
which are filtered take about the same time to execute, as do latitude rows which are not
filtered, with the difference in time between filtered and non-filtered rows being about
15%. This information may be used to decide how to assign latitude rows to processors,
and so better balance the load across processors, in contrast to a simple round-robin
assignment of rows to processors. For example, the best balanced load for an experiment
with 180 latitudes was obtained using eight processors (in contrast to nine, ten or twelve),
even though the eight processors were not all responsible for the same number of latitude
rows. However, as the number of processors approaches the number of latitude rows, the
ability to balance the load decreases, and so makes the round-robin approach as good as
any. It is also of some advantage to assign contiguous latitudes to the same processor, all
other factors being equal, and so reduce off-processor communication.

Scaling results for a one-degree latitude version of SKYHI with 160 vertical levels run on
the 512 processor T3E at the National Energy Research Scientific Computing Center
(NERSC) are shown in Table 2. As in Table 1, these results are from several timesteps of
integration, without archiving data, and do not include the time spent in the initialization
section of the model. This resolution requires a minimum of fifteen 32-Mw T3E proces-
sors in order to have enough memory per pe to integrate the model. It cannot be integrated
on the GFDL forty 16-Mw processor T3E system with one-dimensional domain decom-
position; there is not sufficient memory per processor to contain the data needed for one
latitude row. The degradation of performance with increasing number of processors seen
here is relatively less than on the T90, since SSD access bottle-necks are not involved.
Instead what is seen is the reduction in the ability to balance the load as the number of pro-
cessors approaches the number of chunks of parallel work (180).

Table 2: SKYHI T3E scaling characteristics

Number of Wa]?clock . Parallel
roCcessors Time Scaling Efficienc
P (seconds) y
15 266 15.0 1.000
30 135 29.55 0.985
45 93 429 0.953
60 72 55.42 0.924
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Section 6. Conclusions

The increase in the relative value of human resources compared to machine resources at
GFDL in recent years means that the definition of code optimization must be changed to
include human factors in addition to the traditional machine resource usage. A meteoro-
logical model used in research must be structured so that investigators not familiar with
the details and history of the model may quickly learn enough about it in order to use it
productively in their scientific research. This user-friendliness will usually come at the
expense of machine performance, a condition which must be accepted in order to optimize
the total scientific productivity of the model and of the scientists who use it.

A user-friendly model requires at a minimum that the code is “modular”, meaning that the
different model processes communicate with the rest of the model in clearly specified
ways, as opposed to being intertwined. In this way investigators may easily examine indi-
vidual parts of the model, without having to extract the process of interest from a dense
ball of code, a process which often proves to be both difficult and time-consuming.

The restructured GFDL SKYHI general circulation model has also addressed two specific
topics which in the past have inhibited investigators in their productive use of SKYHI; the
ability to easily define new data files for later off-line analysis of the model output, and the
ability to easily add new variables to the model for specific investigations. The archive
module and user variable module described here have a standard format and are flexible to
user needs. These packages will continue to evolve in response to user desires and com-
plaints, becoming more user-friendly over time. Inclusion of Fortran 90 constructs in these
packages should result in some performance improvements and ultimately cleaner code,
albeit code which will look less familiar to the current user community.

SKYHI has been successfully integrated in production mode on the Cray T932 PVP
machine in both unitasked and multitasked modes using one-dimensional domain decom-
position. Parallel performance scales well with number of processors (if obvious load
imbalance configurations are avoided) to the point where the single-threaded nature of
SSD access limits performance. The same PVP-friendly source has been successfully run
in production mode on the CRI T3E machine using one-dimensional decomposition. Par-
allel performance on the T3E is relatively better because of the absence of the SSD bottle-
neck, but is ultimately limited by the one-dimensional domain decomposition.

At this time, three major areas remain which are negatively impacting the performance of
SKYHI on paralle] systems. Single-processor performance remains an issue; whether
improvements in cache size and system software and utilities will improve performance
significantly or whether major code redesign is necessary is unknown. The lack of paral-
lel /O significantly reduces the scaling efficiency shown in Table 2 in production runs;
when data are read or written, a single processor does the /o while the remaining proces-
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sors wait. Finally, the need for a two-dimensional domain decomposition to allow finer-
grained chunks and therefore better load balancing is obvious as the number of processors
employed on a problem increases. The longitudinal data dependencies in SKYHI which
must be handled in order to allow such a decomposition have been identified, and it
remains to develop a mechanism to deal with them, within the context of a user-friendly
model.
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APPENDIX A
TEMPORAL CONTROL OF ARCHIVE FILE FORMS

Six variables are used to control the temporal characteristics of the archive file forms:

(1) the number of times which data is to be written to a file before closing the file and
opening another one;

(2) the number of seconds between writes to the file;

(3) the number of time levels that are to be averaged to generate the data that is to be writ-
ten;

(4) the amount of time to be counted toward the number of seconds between file writes at
the beginning of the run;

(5) the time in the run at which the file clock is to start;

(6) the time in the run at which the file clock is to stop.

Variable (1) allows one to write multiple files of a given file form during a job. File names
are created automatically following a simple pattern. By making the value of (2) larger
than the length of the job, the writing of the particular file form may be turned off. The
mechanism to define the time-averaging characteristics are defined by (3); if a snapshot
file is wanted, then variable (3) is set to 1. Otherwise, the combination of (2) and (3) deter-
mine the frequency of data sampling. Variables (5) and (6) allow one to write a file during
a specified period of an integration, and (4) provides a means to write files at the frequency
given by (2), but with an offset in time from the start of the job. These six variables are
named in a consistent way for each of the file types, differing only by a single letter, which
indicates the file type.
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APPENDIX B
SUGGESTED PROCEDURE TO USE THE ARCHIVING MODULE

The following process is recommended when using the archiving module:

I) Decide which archive files are to be written during the experiment and define their
desired characteristics. The characteristics are found in the namelist and parameter file
associated with the given file type.
IT) For each file type, choose one of the following options:
A) If no files of this type are desired:
1) Set the preprocessor variable defining the number of file forms of that type to zero.
2) Remove the namelist variables associated with that file type from the namelist.
B) If you desire either a subset or all of the default file forms:
1) Leave the preprocessor file form number variable at the default value.
2) For those file forms that are not being written:

a) Set the seconds between file writes to be larger than the run time of the job.

b) Set variable (3) of Appendix A to be 1, reflecting a snapshot file.

c) Set the spatial index parameters for the file form to all be 1, thus setting the size of
the array which will hold the data to be of length 1.

3) For those file forms to be written:

a) Set the namelist and parameter file to contain the desired file characteristics.
b) If the file form containing a subset of the standard file is to be written, modify the
subroutine defining the file contents so that it will contain the desired variables .
C) If a new file form is to be added:

1) Set the preprocessor file form number variable to the proper value.

2) Add the code to define the new file form, following the existing code pattern. Code
mods must be made to six to ten source files, dependent on the file type.

3) The mods involve duplicating code and changing file form numbers in the variable
names to the number of the new form. Additionally the user must define the vari-
able names to be placed in the file, following the provided patterns.

4) Modification to the script will be necessary to save any new files generated and to
assign the file characteristics, if desired.
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ABSTRACT

In the 1990’s, computer manufacturers are increasingly turning to the development of
parallel processor machines to meet the high performance needs of their customers. Si-
multaneously, atmospheric scientists studying weather and climate phenomena rang-
ing from hurricanes to El Nifio to global warming require increasingly fine resolution
models. Here, implementation of a parallel atmospheric general circulation model
(GCM) which exploits the power of massively parallel machines is described. Using
the horizontal data domain decomposition methodology, this FORTRAN 90 model is
able to integrate a 0.6° longitude by 0.5° latitude problem at a rate of 19 Gigaflops
on 512 processors of a Cray T3E 600; corresponding to 280 seconds of wall-clock time
per simulated model day. At this resolution, the model has 64 times as many degrees
of freedom and performs 400 times as many floating point operations per simulated
day as the model it replaces.

1. INTRODUCTION

The general circulation modeling community constantly demands more computing
power to meet its needs. Short to medium range weather forecasters have used in-
creasingly faster machines to run higher resolution models. The improved solutions
obtained from higher resolution in numerical weather prediction is well known; Sim-
mons, et al. (1989), among others, document this. Higher resolution is also important
to seasonal and interannual variability studies (e.g. Déqué and Piedelievre, 1995 and
Lal, et al., 1997). For studies of longer time scale phenomena, completing model runs
at any reasonable resolution becomes the challenge. Coupled atmospheric/ocean sim-
ulations of El Nifio require enormous computational power. Recently, some modelers
have turned to ensembles of runs to produce better predictions; a strategy that mag-
nifies resource demands. For the time scales of global climate change, coupled model
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runs can last hundreds of simulated years (e.g. Manabe and Stouffer, 1994); for
studies of the thermohaline circulation, those numbers stretch into the thousands.

To meet these needs, supercomputer manufacturers have offered a variety of solutions.
Since the 1980’s, parallel vector processors have been the most widely used by the
GCM community. However, in the 1990’s cache-based massively parallel processor
(MPP) machines have become increasingly prominent. These machines present a
dual challenge to model designers of writing code that runs efficiently within a single
processor yet scales well for hundreds of processors.

A snapshot of the progress of (mostly atmospheric) model designers toward meeting
these challenges was presented in a special issue of Parallel Computing in 1995. Drake,
et al. (1995) wrote a message passing implementation of the National Center for At-
mospheric Research (NCAR) Community Climate Model (CCM2) for the IBM SP2
and Intel Paragon machines. Most notable was the poor single processor performance
they attributed to inefficient cache use (a result noted repeatedly in the literature).
Jones, et al. (1995) implemented a parallel version of the Geophysical Fluid Dynami-
cal Laboratory (GFDL) Atmospheric General Circulation Model (AGCM) running on
the the CM-5 and SGI/Cray C90. Single processing element (PE) performance and
scaling were quite good on the C90 but hampered on the CM5 by over-use of mem-
ory they attributed to poor algorithmic design. Lou and Farrara (1996) optimized
a parallel version of the UCLA AGCM for the Paragon and SGI/Cray T3D/E. The
model scales fairly well but their preliminary attempts at cache-based optimizations
have yielded modest improvements.

Here we describe the parallel design and performance of an AGCM designed for
climate studies. The primary objectives are efficient single PE performance and
scalability on MPPs. Section 2 describes the scientific basis of the model. Section
3 explains the high-level model design, the parallelization methodology, and gives
highlights of the detailed design. Section 4 analyzes the model performance. Section
5 discusses how the model is currently being used and describes on-going optimization
efforts.

2. MODEL DESCRIPTION

The dynamical portion of the GCM is based on a finite-differenced, primitive equa-
tions dynamical core (Dycore) (Suarez and Takacs, 1995) that allows arbitrary hor-
izontal and vertical resolution. It is the dynamical core used by Goddard’s Data
Assimilation Office in the Goddard Earth Observing System (GEOS) GCM and by
NASA’s Seasonal to Interannual Prediction Project (NSIPP). Its prognostic variables
are the two horizontal wind components, the potential temperature, the surface pres-
sure, the water vapor mixing ratio, and an arbitrary number of passive tracers. In
the vertical, the discretization scheme closely follows that proposed by Arakawa and
Suarez (1983), but applied to a generalized vertical coordinate (0 — p). In the hori-
zontal, the equations are finite-differenced on a staggered latitude-longitude grid (the
C-grid). To avoid linear computational instability due to convergence of meridians
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near the poles, a Fourier filter is applied to all tendencies pole-ward of 45 degrees lat-
itude. The model also uses a scale-selective filter (Shapiro, 1970) to damp grid-scale
variance that can lead to non-linear computational instability. The model is inte-
_grated in time using a leapfrog scheme modified as proposed by Brown and Campana
(1978) and by applying a weak time filter (Asselin, 1972).

The solar parameterization (Chou, 1992) models absorption due to Oz, CO,, water
vapor, O, clouds, and aerosols, as well as gaseous, cloud, and aerosol scattering.
The infrared parameterization (Chou and Suarez, 1994) includes absorption by water
vapor, CO,, O3, methane, N,O, CFC-11, CFC-12 and CFC-22 within eight spec-
tral bands. Other parameterizations include the Louis et al. (1982) turbulence and
Zhou et al. (1996) gravity wave drag schemes. Penetrative convection originating in
the boundary layer is modeled using the Relaxed Arakawa-Schubert (RAS) scheme
(Moorthi and Suarez, 1992). The Mosaic land surface model (LSM) (Koster and
Suarez, 1992) computes area-averaged energy and water fluxes from the land surface
in response to meteorological forcing. A grid square is sub-divided into relatively
homogeneous sub-regions (“tiles” of the mosaic), each containing a single vegetation
or bare soil type.

3. COMPUTATIONAL DESIGN

We begin by describing the high level structure of the GCM so as to provide context
for the results in section 4. The model is divided into self-contained components,
each operating on its own space (grid) and time scales. “Coupling” software converts
data from one model grid to another in parallel. The couplers serve the same purpose
as the NCAR Climate System Model (CSM) flux coupler (Bryan, et al., 1996). The
GCM driver that ties together these components can be atmospheric only, ocean only,
coupled atmospheric/ocean, etc. Presently, the major components for this AGCM are:

1. Dynamics - Dycore, the Shapiro filter and the model stepping functionality.
2. Slow Physics - The longwave and shortwave radiation calculations.

3. Fast Physics - The remainder of the AGCM; convection, turbulence, land processes,
etc.

The parallelization is implemented using a horizontal data domain decomposition.
Put simply, each processor operates on a slab of data extending from the surface to
the top of the atmosphere. The primary advantage of this decomposition is that the
number of horizontal grid points available to divide among the processors is large,
allowing utilization of hundreds of PE’s. In addition, physics calculations such as
longwave, shortwave, etc. become “embarrassingly parallel”. Finally, at a practical
level, using this scheme means that the original plug compatible physics subroutines
can be retained, unmodified, in the parallel implementation.

The processors are laid out in a rectangular array so that each PE has exactly one
neighbor on each of four sides. The number of PE’s in the X and Y direction (NX and
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NY) as well as the number of grid points within each PE (IM and JM) are selectable
at run-time. In particular, IM can be different for each of the NX columns of PEs
and JM different for each of the NY rows. Ghost (shadow) regions are defined to
facilitate local addressing and nearest neighbor communication. When code such as
horizontal advection needs to access an array element outside the local processor, a
communications call is made to fill in the ghost region. Once the data are in place,
the code can process as if it were written for a computer. The communication is
bundled over all levels to reduce the impact of latency.

Since the primary objective is implementation on a distributed memory MPP, a
message-passing scheme is used for the communication. Generic synchronous point
to point send/receive routines provide the backbone for this scheme. Currently they
are implemented using calls to either native Cray shared memory software (SHMEM)
or message passing interface (MPI) routines. This backbone is packaged into a single
“communication primitives” module. Since this is the only code that varies between
implementations, porting the model is quite simple.

While most of the communication in the model is nearest neighbor, the polar filter is
a significant exception. It is implemented by first transposing the data from an (X,Y)
to a (Y,Z) decomposition, then executing local FFTs, then transposing back. This
implies that the greater the decomposition in X, the poorer the performance of the
polar filter. Conversely, nearest neighbor communication scales as 7;%3 only if the
processor layout is close to symmetrical. These conflicting performance considerations
guide optimal processor layout choice and represent the most obvious disadvantage
of this decomposition strategy.

Currently, no load balancing is implemented. The sources of imbalance are: 1. The
shortwave code; radiative transfer calculations need only be performed for sunlit
soundings. 2. The land surface code; no computations are needed for ocean points
and the uneven distribution of tiles further un-balances the problem. 3. Cumulus
convection; fewer computations are needed where convection does not occur. 4. The
polar filter; it only operates pole-ward of 45 degrees latitude. The utility of imple-
menting load balancing schemes will be discussed in section 5.

The Dynamics, all upper-level Physics routines and control and communication rou-
tines are written in FORTRAN 90. Most of the low-level, plug-compatible, com-
putational routines in the Physics have been left in FORTRAN 77. Array syntax,
user-defined types, subroutine overloading, modules, and dynamic memory allocation
are used extensively. Use of these features has helped to create reasonably well-
structured code and greatly facilitated debugging. Since all memory is dynamically
allocated, the model runs at any resolution using any processor layout without re-
compilation. On the downside, dynamic memory use may hamper future cache-based
optimizations.
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4. RESULTS AND PERFORMANCE

The model is currently being run on the DEC Alpha workstation, Cray T3E, and
Cray J90. To validate the code, results were compared to those from the serial,
FORTRAN 77, production version for the same initial and boundary conditions at a
resolution of 72x45x22. At this resolution, Dynamics and Fast Physics are run at 9
minute intervals and Slow Physics every 3 hours. After 3 hours, checksums of state
variables, budgets and other diagnostic quantities for the old and new code differ at
the round-off level; for one or multiple processors.

To assess performance, the floating point operations (FLOPs) are counted for a one
processor run on a CRAY J90 using the PERF utility. These numbers are generally
more conservative (up to 25%) than the operation counts produced by T3E-native
counters. Initialization and finalization times are not counted. No model output
is done during the “run” phase for purposes of these benchmarks. Performance is
then computed by dividing the FLOP count by the run-time measured by wall-clock
timers. The 72x45x22 resolution problem was run on the Cray T3E-600 using 32
bit words for up to 64 PEs. The peak performance is 1.35 Gflop/s, corresponding
to 20 seconds run-time per simulated model day. A 64 bit version runs at only 28
seconds per day; largely due to the fact that the code is memory-access bound. In
comparison, the original production version running multi-tasked on the Cray J90
(64 bit) simulates one model day in 50 seconds.

To truly exploit the power of the T3E machine, we turn to a high resolution problem;
576x360x22 (0.625° by 0.5° by 22 levels). Preliminary tests show a Dynamics time
step of one minute is required to satisfy the Courant-Friedrich-Levy (CFL) condition
for linear numerical stability at this resolution. The Fast Physics is run every 10
minutes and Slow Physics at 3 hour intervals. For a 3 hour run, the floating point
operations total 686 billion. The 32 bit version requires approximately 1 billion words
of memory; translating to a minimum of 64 Cray T3E-600 PEs. The GCM was tested
for processor configurations totaling up to 512 PEs. Experimentation showed that for
512 PEs, a processor layout of 16 PEs in longitude, 32 in latitude is optimal. For that
case, the performance is 19.6 Gflop/s. This corresponds to 280 seconds of wall-clock
time per simulated model day.

The details of the T3E performance are shown in the speedup plots in figure 1. The
solid lines in the figure are curve fits of the data to Amdahl’s speedup law:

1
._...————F—
Fs+I—V%

where S is the speedup, F's is the serial fraction, F'p is the parallel fraction and Np
is the number of processors. For a perfectly load balanced code, the effective single
processor performance is an estimate of how fast it would run on 1 PE if that were
possible. Notice that, in Dynamics, this number is higher than the per-processor
performance because it does not include the degradation due to communication as
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Table 1: Floating point operations (in billions), run-time, total performance, and per
pe performance for a 3 hour run of the 576x360x22 resolution problem at 512 PEs.

Code GFLOP | Time (s) | Gf | Mf/PE
Dycore 427.3 17.77 | 24.1 47.0
Shapiro 74.6 5.56 | 13.4 26.2
Step 33.6 1.57 | 21.4 41.8
Longwave 34.3 0.97 | 35.4 69.1
Shortwave 48.0 2.77 | 17.3 33.8
Lsm 6.8 096 7.1 13.8
Ras 4.6 1.21] 3.8 7.4

the problem is scaled to 512 PEs. The floating point operation counts show that
Dynamics is responsible for the great majority of the work. This is largely due to
its relatively short time steps. The fact that Slow Physics does not scale perfectly is
currently under investigation.

Table 1 shows a breakdown of performance of the major GCM components. The
dynamical core consumes the most run-time and will need the greatest attention
during future optimizations. The poor scaling of the Shapiro filter is expected; it does
relatively few floating point operations per communication. That the Step function
does not scale perfectly is merely an artifact of the code design. It fills the ghost
regions of the state variables; work that could just have easily been done in Dycore.

The LSM and RAS codes are “super-scaling”. This commonly observed result occurs
because as the number of processors increases, the amount of memory needed per pe
decreases and, consequently, the data fit better in cache.

The rated performance of the Cray T3E 600 is 600 Mflop/s. While, in practice, few
codes reach 200 Mflop/s per PE, it is clear from table 1 that our per-PE performance
is much lower. One reason is poor cache re-use. As a first cut, this code was written to
mimic the original serial code which was designed to run efficiently on vector machines.
As of yet, no serious cache-based optimizations have been attempted. A second reason
is communication costs. Measurements by the T3E Apprentice utility indicate that
25% of the Dycore run-time is communication. Latency is significant. Even with
bundled Ghost calls, preliminary measurements indicate that 35% of the nearest
neighbor communication time is latency. When the Ghost calls are unbundled, Dycore
performance degrades by 20%. A third cause of the poor single-pe performance is load-
imbalance as described earlier. Strategies to address these inefficiencies are discussed
in the next section.

A Cray J90 SHMEM version of the code for the same resolution performed at 90
Mflop/s on one processor. Since the rated performance of the J90 is 200 Mflop/s,
the model is clearly vectorizing quite well. Although a multiple processor J90 version
has not been run for this resolution, past experience suggests that it should perform
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Figure 1: Speedup plots for 3 hour runs of the full GCM and its three major components.
The floating point operations in billions are given at the top of each graph. The asterisks
represent the speed in Gflop/s for 128, 256 and 512 PEs. The dot-dashed line represents a
perfectly linear speedup. The solid curve was obtained by fitting the operations and run-
times to Amdahl’s speedup law (see text). Fp and S are as given in Amdahl’s law. The
effective single PE performance is the curve value for Np=1.
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at about 1 Gflop/s for 16 PEs. An MPI implementation on the J90 was found to
significantly degrade the code’s performance; presumably due to the high level of
overhead in the MPI software. A T3E MPI version has not been tested.

5. DISCUSSION

As currently written, the code performs well enough to enable production runs at high
resolution ( 0.6° longitude by 0.5° latitude by 22 levels) using 512 processors. In fact,
a one year run at this resolution has already been completed. The model can also run
efficiently at lower resolutions. For example, a 1.25° longitude by 1° latitude problem
running on 128 processors would actually out-perform the high resolution case. The
Dynamics, Fast Physics and Slow Physics would run with the same efficiency as in
the high resolution case since the amount of work and number of processors have both
decreased by a factor of 4. However, for the lower resolution, a Dynamics time step of
2 minutes could be taken, significantly improving the model throughput. The same
reasoning applies to a 2.5° longitude by 2° latitude problem running on 32 PEs. For
that resolution and lower, an ensemble of runs most effectively utilizes the 512 PE
machine. Such ensemble runs are currently underway. Another planned application
of the model is to couple it to a parallel version (currently under development) of
the Poseidon ocean model (Schopf and Loughe, 1995). A planned 100 year coupled
run using a 2.5° longitude by 2° latitude atmospheric resolution running with 32
processors should be quite feasible.

Five major avenues of optimization are under investigation; semi-implicit time differ-
encing, single PE optimization, reduction of software latency in the communication
code, load balancing, and parallel/asynchronous I/O. As the results indicate, for
the high resolution case, Dynamics is the bottleneck due to the small time step. A
semi-implicit time differencing scheme is currently being developed. Successful im-
plementation of this scheme would allow the time step to be raised to perhaps 2-4
minutes for the high resolution problem.

Single PE optimization will largely be achieved by better cache re-use. Preliminary
analysis shows that the local storage for one sounding in the longwave code for the
high resolution case could fit entirely in cache. Obtaining such a fit should enhance
performance. A similar strategy could be applied to the shortwave and Fast Physics
codes. Further single PE optimization may require more draconian measures such
as re-organizing data structures and writing key components in assembly language.
Of course, such modifications would degrade vector performance on parallel vector
machines as well as the clarity of the code itself.

As mentioned, communications latency is significant. Much of this latency appears to
be due to unnecessary overhead in the “communication primitives” software. Efforts
are underway to eliminate this overhead by eliminating communication buffers and
superfluous memory access. Elimination of this excess latency should, for example,
enable the aforementioned coupled run to scale well beyond 32 processors.
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Off-line experimentation suggests that load balancing will improve the performance
of the shortwave and LSM calculations. The re-distribution of data is determined
ahead of time so the only cost is the actual communication. Some benefit could also
be gained from a load-balanced polar filter since at 512 PEs, 60% of the polar filter
time is spent doing the actual FFT. For RAS, it is possible no improvement at all
will be achieved since a great deal of the run-time would have to spent determining
how the data should be re-distributed.

For the long runs currently in progress, relatively little diagnostic output is needed
so the cost of I/O is insignificant. It is estimated that even a planned 5-fold increase
in model output will not present any great difficulty. Should this turn out not to be
the case or if even more extensive output is needed then parallel/asynchronous I/O
may be required. Development of parallel I/O software is discussed in Sawyer, et. al.
(1998).

In conclusion, a parallel atmospheric general circulation model that successfully ex-
ploits the power of MPP’s such as the Cray T3E has been developed. The model is
being used for high resolution runs as well as ensembles of low resolution cases. On-
going efforts to improve single processor performance, reduce communication over-
head, and mitigate load imbalancing will enable even more effective use of these
powerful machines.

ACKNOWLDEGEMENTS

This project is supported by the Global Modeling and Analysis Program in NASA’s
Office of Mission To Planet Earth under RTOP No. 622-24-47. Access to the Cray
T3E-600 was provided by the Earth and Space Sciences (ESS) component of the
NASA High Performance Computing and Communications (HPCC) Program. We
would like to acknowledge Jim Abeles of SGI/Cray for the help he has provided over
the years in design and optimization. Thanks also go to Tom Head of Carnegie Mellon
for early work on the project and to Paul Schopf of George Mason University for his
ideas on the GCM design.

REFERENCES

Arakawa, A. and Sudrez, M.J., 1983: Vertical differencing of the primitive equations
in sigma coordinates. Mon. Wea. Rev., 111, 34-45.

Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100,
487-490.

Brown, J.A. and Campana, K., 1978: An economical time-differencing svstem for
numerical weather prediction., Mon. Wea. Rev., 106, 1125-1136.

Bryan, F.O., Kauffman, B.G., Large, W.G., Gent, P.R., 1996: The NCAR CSM Flux
Coupler. NCAR Technical Note (NCAR/TN-424+STR, May 1996).

93



Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos.
Seci., 49, 762-772.

Chou, M.-D. and Sudrez, M.J., 1994: An efficient thermal infrared radiation param-
eterization for use in general circulation models. NASA Technical Memoran-
dum, 3, 104606, 84pp.

Déqué, M. and Piedelievre, J. Ph., 1995: High Resolution climate simulation over
Europe. Climate Dynamics, 11, 321-339.

Drake, J., Foster, 1., Michalakes, J., Toonen, B., and Worley, P., 1995: Design and
performance of a scalable parallel community climate model. Parallel Com-
puting, 21, 1571-1591.

Jones, P.W., Kerr, C.L., Hemler, R.S., 1995: Practical considerations in development
of a parallel SKYHI general circulation model. Parallel Computing, 21, 1677-
1694.

Koster, R.D. and Sudrez, M.J., 1992: Modeling the land surface boundary in climate
models as a composite of independent vegetation stands. J. Geophy. Res., 97,
2697-2715.

Lal, M., Cubasch, U., Perlwitz, J., and Waszkewitz, J., 1997: Simulation of the Indian
Monsoon Climatology in ECHAM3 Climate Model: Sensitivity to Horizontal
Resolution. Intl. J. Climat., 17, 847-858.

Lou, J. and Farrara, J., 1996: Performance Analysis and Optimization on the UCLA
Parallel Atmospheric General Circulation Model Code. In Proceedings Super-
computing '96, Pittsburgh, PA, USA, ACM-IEEE.

Louis, J., Tiedke, M., and Geleyn, J., 1982: A short history of the PBL parame-
terization at ECMWF. In ECMWF workshop on Planetary Boundary Layer
Parameterization, Reading, pp. 59-80.

Manabe, S. and Stouffer, R.J., 1994: Multiple-Century Response of a Coupled Ocean-
Atmosphere Model to Increase of Atmospheric Carbon Dioxide. J. Climate,
7, 5-23.

Moorthi, S. and Susrez, M.J., 1992: Relaxed Arakawa-Schubert: A parameterization
of moist convection for general circulation models. Mon. Wea. Rev., 120,
978-1002.

Sawyer, W., Lucchesi, R., Lyster, P.M., Takacs, L.L., Larson, J., Molod, A., Nebuda,
S., and Pabon-Ortiz, C. 1998: Parallelization aspects of an atmospheric gen-
eral circulation model for data assimilation. In Proceedings High Performance
Computing '98, Boston, MA, USA.

Schopf, P. and Loughe, A., 1995: A reduced-gravity isopycnic ocean model - hindcasts

54



of El Nifio. Mon. Wea. Rev., 123, 2839-2863.

Shapiro, R., 1970: Smoothing, filtering and boundary effects. Rev. Geophys. Space
Phys., 8, 359-387.

Simmons, A.J., Burridge, D.M., Jarraud, M., Girard, C., and Wergen, W., 1989:
The ECMWF Medium-Range Prediction Models Development of the Numer-
ical Formulations and the Impact of Increased Resolution. Meteorol. Atmos.

Phys., 40, 28-60.

Suérez, M. J. and Takacs, L.L., 1995: Documentation of the Aries/GEOS dynamical
core Version 2, NASA Technical Memorandum, 5, 104606, 58pp.

Zhou, J.,, Sud, Y.C., and Lau, K.-M., 1996: Impact of orographically induced gravity-
wave drag in the GLA GCM. Quart. J. Roy. Meteor. Soc., 122, 903-927.

95



96



Requirements and Problems in Parallel
Model Development at DWD

Ulrich Schattler, Giinther Doms
Deutscher Wetterdienst, Postfach 100465, 63004 Offenbach, Germany
uschaettlerQdwd.d400.de
phone: +49 69 8062-2739; fax: +49 69 8236-1493

Abstract

Nearly 30 years after introducing the first computer model for weather fore-
casting, the Deutscher Wetterdienst (DWD) develops the 4th generation of its
numerical weather prediction (NWP) system. It consists of a global grid point
model (GME) based on a triangular grid and a non-hydrostatic Lokal Modell
(LM). The operational demand for running this new system is immense and
can only be met by parallel computers.

Regarding former NWP models, several new problems had to be taken into
account during the design phase of the system. Most important are the porta-
bility (including efficieny of the programs on several computer architectures)
and an easy code maintainability. Also the organization and administration
of the work done by developers from different teams and institutions is more
complex than it used to be.

This paper describes the modular approach used for the design of the LM
and discusses the effects on the development. Some results of investigations
from GMD (German National Research Center for Information Technology)
and the software engineering company Pallas are presented on how the LM
will perform on different computer architectures and how new hardware will
influence the programming style used.

1 Introduction

In 1996 DWD started to develop the 4th generation of its NWP system. The cur-
rent 3rd generation operational system consists of a spectral Global Modell (GM),
a regional grid point model for the synoptic and meso-a scale covering the North-
ern Atlantic and Europe (the Europa-Modell EM) and a high resolution meso-3 scale
Deutschland-Modell (DM). EM and DM are running the same code but with different
domain sizes and resolutions.
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In the new system, GM and EM are combined to a global grid point model GME with
physical packages based on the EM/DM. It should produce global forecasts for up to 7
days at least in the quality of the EM. The hydrostatic DM will be replaced by a non-
hydrostatic Lokal Modell (LM), which will be used for numerical weather prediction
on the meso-3 and on the meso-v scale as well as for the evaluation of local climate
and for various scientific applications covering a wide range of spatial scales (down
to grid spacings of about 100 m). The weather forecasts include clouds, fog, precipi-
tation, local wind systems and also severe weather events. The whole system will be
used as simulation and research tool for applications such as parameterizations, data
assimilation and climate investigations. For the development of both models collabo-
rations have been started with several national and international research institutes
and universities.

The initial resolutions of the models for NWP (~ 55 km horizontal for GME with 31
levels and ~ 8 km for LM with 35 levels) will be increased in the next years (to ~ 25
km for GME with 40 levels and ~ 2-3 km for LM with 50 levels) demanding a com-
putational power of about 300 x 10'2 floating point operations for a 24 hour forecast
for each model. To meet these requirements, GME and LM have been parallelized
and implemented for distributed memory parallel computers using Standard Fortran
90 and the Message Passing Interface (MPI) as parallel library. But they can still be
executed on conventional scalar and vector computers where MPI is not available.

With such a computer power necessary, the efficiency of the models is extremly depen-
dent on the underlying hardware. Changes to computer and processor architectures
in the past have forced model developers to a total restructuring and recoding of their
codes. With the development speed of computers in mind it can be foreseen that the
frequency of such updates will be increased in the future. On the other hand it is not
clear today which computer or processor architecture will be the most promising or
affordable one in about 3-5 years. To the well known requirements of code maintain-
ability and efficiency on one computer system now also comes the portability to and
the efficiency on a wide range of different computer systems and architectures. At the
same time the program design should also allow for easy code modifications to react
not only on changes in computer hardware but also on new scientific developments.

Another problem of the model development is that only few scientists involved do have
experience in parallel programming or in the new features of Fortran 90. Therefore,
a good strategy has to be implemented that enables also programmers with only few
knowledge to work on the code.

This paper reports on the development progress reached so far at DWD. Section 2
gives the basic features and parallelization strategies of both models. The modular
approach used for the design of the LM is described in Section 3. The effect of the
modularity on the development work today and in the future is discussed. Some future
problems regarding computer architecture and programming style are presented in
Section 4.
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2 Description of the Models

Detailed scientific documentations are available for both models [1, 2]. Therefore, only
some basic features will be given here. A more comprehensive summary can be found

in [3].

2.1 The Nonhydrostatic Regional Model LM

Equations, algorithms and grid structure

The LM is based on the primitive hydro-thermodynamical equations describing com-
pressible nonhydrostatic flow in a moist atmosphere without any scale approxima-
tions. A basic state is subtracted from the equations of motion to reduce numerical
errors associated with the calculation of the pressure gradient force in case of slop-
ing coordinate surfaces. The continuity equation is replaced by an equation for the
perturbation pressure, which becomes a prognostic variable besides the three velocity
components, temperature, water vapour and cloud water. The set of model equations
is formulated in rotated geographical coordinates and a generalized terrain following
vertical coordinate.

Spatial discretization is by standard second order finite difference schemes on a
C-/Lorenz-grid. The time integration is performed with the leapfrog-method using
Klemp’s and Wilhelmson’s [4] time splitting technique including extensions proposed
by Skamarock and Klemp [5] to solve for the sound and gravity wave terms. The
idea of the time splitting is to treat the fast terms describing sound and gravity wave
propagation with small time steps At, while doing a large step At for the slow terms
(advection, physics). Because only a subset of terms in the model equations is inte-
grated with a small At, whereas the computational expensive slow terms have to be
updated less frequently, the algorithm becomes numerical efficient.

The physics package of LM has been adapted from the operational hydrostatic DM
and thus only applies on the meso-3 but not on smaller scales. Work on new param-
eterization schemes to upgrade the physics for model applications on smaller scales
is in progress.

Parallelization

The parallelization strategy for the LM is the 2D domain or data decomposition
(grid partitioning) which is well suited for grid point models using finite differences.
This strategy also is used and described by several other authors [6, 7, 8, 9]. Each
processor gets an appropriate part of the data to solve the model equations on its own
subdomain. These subdomains are arranged in a two-dimensional array of rectangular
tiles. The local data structure of every processor contains additional rows and columns
to store the values of grid points belonging to neighboring processors (see Figure 1).
During the integration step each processor updates the values of its local subdomain;
grid points on the edges are exchanged using explicit message passing.
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Figure 1: 2D domain decomposition with local data structure

The splitting method used in the LM is implemented with an implicit Crank-Nicolson
method in the vertical and with an explicit forward-backward scheme in the horizon-
tal. Therefore, only a nearest-neighbor exchange, i.e. local communication, is neces-
sary for this model.

2.2 The new Global Model GME

Equations and algorithms

The system of equations solved in the GME is based on the hydrostatic primitive equa-
tions. These equations are integrated using a semi-implicit algorithm. The explicit
part is solved with a three time-level semi-Lagrangian scheme while the semi-implicit
corrections are computed by solving an elliptic PDE, namely a Helmholtz-equation.

Grid Generation

For the horizontal discretization of the equations a triangular grid based on the icosa-
hedron is introduced. It was first described by Sadourny et.al. [10] and Williamson
[11]). The approach outlined here is based on the work of Baumgardner [12]. The same
grid today also is used by Loft [13].

To construct the grid, the sphere is divided into 20 spherical triangles of equal size
by placing a plane icosahedron into it. The 12 vertices of the icosahedron touch the
sphere, one vertex coincides with the north pole and the opposite one with the south
pole. The spherical triangles are defined by the great circles connecting two vertices
respectively. Each of the 12 vertices then is surrounded by 5 spherical triangles. Two
adjacent triangles are combined to form a “diamond”, i.e. a logically square block.

For further grid generation, the sides of the 20 main triangles are subdivided iter-
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Figure 2: Grids derived from the icosahedron

atively into n¢ equal parts to form subtriangles. Each point in a main triangle is
surrounded by six triangles and accordingly is in the center of a hexagon. However,
the points which form the vertices of the icosahedron are surrounded by only five tri-
angles and therefore are the centers of pentagons. Some resulting grids are illustrated
in Figure 2.

The derivation of the necessary numerical operators (e.g. for the gradient, the diver-
gence or the Laplacian) for this triangular grid as well as a more detailed explanation
of the grid generation can be found in the documentation of the GME [2].

Parallelization

The diamonds can be looked upon as logical square blocks and therefore can be
implemented with normal data structures. In the sequential program a global twodi-
mensional field is stored as a threedimensional array. The third dimension represents
the 10 different diamonds covering the earth.

The parallelization strategy is by data decomposition again. But while this is straight-
forward for a regional model a more sophisticated strategy has to be used here. A
practical way for the parallelization is based on the viewpoint that every diamond can
be regarded as a regional model and is related to an idea of John Baumgardner. Ev-
ery diamond can be partitioned in the same way like the domain of a regional model.
Since all diamonds are of equal size, their decomposition is identical. If the processors
are arranged in a two dimensional grid corresponding to the decomposition of the
diamonds, every processor gets a part of each diamond. This kind of decomposition
is shown in Figure 3 for 4 processors.

Other decompositions of this triangular grid that minimize the amount of data to be
transferred have been investigated by GMD [14, 15]. But within the decomposition
described above the 10 parts of each diamond that a processor gets are distributed
regularly over the earth. From a statistical point of view there is a chance to get a
rather balanced load distribution, regarding the computations in the physical packages
(day-night radiation, land-water distribution).
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Figure 3: Logical view of the decomposition for the GME

3 Code Design for the LM

Modular design

Modularity is a basic attribute of NWP models, but in programming languages as
Fortran 77 it was difficult to express in the program design. Fortran 90 supports a
modular development approach by grouping together variable declarations and sub-
programs into MODULEs.

The LM uses MODULEs in three different ways:

e The data modules form the data pool of the model (meteorological as well as
organizational variables). With the Fortran 90 USE-statement these data are
available for other modules. The data modules replace the COMMON-blocks used
in Fortran 77.

e The second group of modules provide utility routines that handle small tasks
which need not be model specific. Examples are the time measurement, the de-
termination of the actual date and time or the computation of meteorological
variables derived from the prognostic variables. All routines necessary for par-
allel programming (i.e. routines containing calls to the message passing library)
are also put into utility modules.

e All routines belonging to a model specific task (or package) are combined in
a source module. “Package” is a term defined by Kalnay [16] regarding the
physical packages, i.e. the parameterization of the atmospheric subgrid-scale
physical processes such as radiation or convection. More general, also other
parts of the model (dynamics, input and output of data) can be viewed as
packages. By using the data and utility modules the source modules belonging
to these packages can be written in a way that they are independent from each
other.
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Every module has to list the data and the routines used from other modules. These
lists define clearly the interface of the module. Figure 4 shows the modules used in the
LM and their dependencies. The top level of the model is the main program lmorg.
It manages all tasks of the forecast by using the source modules.

The clear modular formulation facilitates concurrent work on different (source) mod-
ules. For the development of the LM this is very important, because most physical
parameterizations have to be adapted to very high resolutions in the next months.
The work on the different schemes can be done without conflicting others. At the
same time also different numerical schemes for the dynamics are investigated and

tested.

Portability

One of the main goals for the source code development of the LM is portability. First
of all this means that the same code has to run on every computer platform without
having to change the source itself. This is obtained by using only standard Fortran 90
and MPIL. MPI is adopted as a standard by nearly all computer vendors and efficient
implementations are available for their parallel machines. For sequential platforms
having no MPI implementation, dummy interfaces for the MPI routines are provided
for the LM.

A second aspect of portability is that the program should also be efficient on different
machines. The efficiency of the LM on vector processors is very good, because the code
is written in the same way as former highly vectorized models (the most inner loop
is horizontal east-west direction). The coding style used for vectorization has some
limitations for cache based scalar RISC processors. Many compilers on the other hand
have optimization features (such as loop unrolling or splitting, etc.) that can produce
rather efficient code for RISC processors. The optimizations performed on the LM
code are not hardware specific, but in a way that every processor architecture will
benefit (avoid duplicate computations in different routines by providing more memory;
avoid divisions, etc.)

Communication is not a very critical issue for the LM. During a time step only local
communications with the neighbors are necessary. To compute some mean values for
monitoring the forecast, a global reduce is done from time to time. On all machines
and with all domain sizes tested so far, the communication time was below 3 % of

the total time.

Up to now the LM has been tested on Cray PVP machines, Cray T3E, SGI Origin
2000, IBM SP2, Fujitsu VPP700, NEC SX-4 and several workstations.

Parallel Programming
As mentioned above, a portable parallel version of the LM is already available. Re-

search and development is going on in the parameterizations, the dynamics, the as-
similation scheme and related areas. The problem now faced is that most of the
programmers involved in this work do not have much experience in parallel program-
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ming. Therefore, a strategy has been thought of, to enable them to work on the
parallel LM and in a parallel computing environment.

The basic idea is that the computations in a subdomain are organized in the same
way as the ones in the total domain, if working on a shared memory computer. The
total domain has a specified number of boundary lines (= nboundlines) at each side,
on which values are provided by the surrounding model. The forecast is computed
only in the interior of the total domain. The same holds for every subdomain, with
the exception that the values on the boundary lines (also nboundlines at each side)
are provided by the neighboring processors via message passing.

Three different kinds of calculations have to be considered for the programming:

e Loop organization: The horizontal size of a subdomain is (1...1ie,1...7je).
Start- and end-indices are provided, if values have to be calculated only in the
interior part (istart...iend, jstart...jend). If values have to be calculated
also on the boundaries, the loops range from 1...ie and 1... je, respectively.
These values are set at the beginning of the program, according to the number
of processors and the decomposition. Therefore, for most loop calculations there
is no difference between the sequential and the parallel program.

e Grid point calculations: To perform computations on certain grid points, rou-
tines are provided to determine the local indices and the number of the subdo-
main in which a grid point is located from the global indices of the total domain
and vice versa.

e Elemental parallel operations: Routines for special operations needing message
passing are included in the utility modules. These are tools for computing e.g.
mean or extreme values of the total domain as well as distributing values to or
collecting them from the nodes.

The features described above allow programmers to work on special modules of the LM
in a parallel environment without having much knowledge in parallelization. They are
able to get the code running, but an experienced programmer might have to optimize
the modules later on.

4 Future Development Problems

The LM will be the main forecast tool of DWD in the next decade. In 2001 it should
run with a grid size of 800 x 800 x 50 points and a time step of At = 10s. A 24
hour forecast has to be completed during 30 minutes of wallclock time. For that
purpose, the computing power at DWD is increased in the next years. The current
SGI/Cray T3E with 376 application processors will be replaced by a system with

65



Table 1: Predicted timings for different processor speeds

Processor || runtime | dynamics | physics | MPI | Efficiency
(h) % % %

T3E600 4.78 64.83 33.64 | 1.53 0.86

T3E900 3.20 64.63 33.53 | 1.84 0.86

T3E4000 0.72 61.20 31.75 | 7.05 0.81

1024 processors in 1999 and later on by a successor system, the architecture of which
is not clear today.

A current trend on the hardware sector is the clustering of SMP (symmetric multi
processing) systems. DWD now is concerned about the performance of the LM on
machines with > 1000 processors and about such SMP clusters. Also it is very impor-
tant to know whether the programming style has to be changed to fully exploit the
two different connection systems (inter- and intranode communication) of clusters.
Similar problems have been studied e.g. by [17] and [18].

These questions have been investigated on behalf of DWD by GMD and the software
engineering company Pallas [19, 20]. They constructed a run time model for the LM
and predicted the performance on several partly non-existing computer architectures.

Table 1 shows predicted runtimes of the LM in the size described above for a 24
hour forecast on a 1024 processor T3E with different processor power (T3E600 with
600 MFlop/s peak performance, T3E900 and a fictitious T3E4000). Given are the
runtime in hours and the percentages for the computations (in the dynamics and in
the physics) and for the communications together with the parallel efficiency. The
same interconnection network has been assumed for all processor types, therefore
the percentage of the communication is higher for faster processors resulting in a
decreased efficiency. Table 1 shows that the processor speed has to be about 7 times
faster than that of the T3E600 to compute a 24 hour forecast in half an hour.

One way to reach the desired speed within one processing element is the utiliza-
tion of SMP nodes. As programming models for SMP clusters there are two major
alternatives:

¢ Only message passing on all processors:
This will be efficient, if the MPI implementation can fully exploit the speed
of the shared-memory communication within one SMP-node. For the LM this
model has the advantage, that no changes are necessary.

o Message passing on the cluster level and shared-memory programming within
one node:
The shared-memory programming could be done with automatic parallelization,
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which most compilers provide on loop level. The code could also be taken as it
is today, but normally this is not very efficient. By using compiler directives,
the efficiency will be better, but major changes to the code are necessary then.
Another problem of this approach is the portability, but OpenMP could be a
new standard for the parallelization with directives.

Again, the modular design of the LM would facilitate the adaption to SMP-clusters
using the shared-memory model, because an incremental parallelization is possible,
starting with the most computing intensive modules.
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1. Introduction

1.1 Background

The Unified Model (UM) is the suite of software developed and used at the Met. Office for atmosphere
and ocean numerical modelling. The UM is the central component both of operational numerical
weather forecasts, and of all climate prediction research studies carried out at the Met. Office (within the
Hadley Centre). A range of temporal and spatial scales, including global and regional domains, is
supported in the formulation of the UM and allows it to be used in a number of different model
configurations, for a variety of operational and research activities. Following the introduction of the UM
into operational service in 1991, both its formulation and capabilities have been significantly enhanced.
Parallelisation of the model to take advantage of distributed memory platforms is a continuation of this
process.

The code structure of the UM was developed in Fortran77 with standard extensions, including allocation
of dynamic memory. I/O operations are coded in C as an aid to portability across platforms. Original
developments and operational running began on an 8 CPU Cray-YMP, subsequently to be replaced by a
16 CPU Cray-C90. For these shared memory architectures, parallelisation was achieved by autotasking
through pre-processor directives, with little involvement by programmers. Most programming effort for
optimisation went into maximizing vector lengths and ensuring that DO loops vectorized. In order to
take advantage of a massively parallel computer (MPP) with distributed memory, it was necessary to
make substantial changes to the code. Hence a migration strategy was planned for a project that would
take several years, starting from a team of 3 and building to include over 50 staff at the height of
development activities.

1.2 Hardware

A Cray-T3E was installed at the Met. Office in September 1996, with successive hardware upgrades
leading to the present configuration of 870 processors. Model runs of the UM are launched from a
graphical user interface serving a local network of Hewlett-Packard workstations. Operational and
climate production output data are transferred to an IBM 9672 R73 general purpose data server for
subsequent post-processing and archiving functions.

The Cray-T3E is used for a variety of jobs, sharing between operational and climate users in the
Met.Office. To make most efficient use of the MPP resource, the operational global model is run with
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144 processors, and each standard climate production model is run with 72 processors, although higher
numbers of processors have been used in a ’catch-up’ mode.

All functions of the Cray-C90 were progressively mirrored on the Cray-T3E during 1997. Production of
operational forecasts was switched over in January 1998 and the Cray-C90 dismantled and removed in
February.

1.3 Requirements for parallelisation

The Met. Office has a rolling programme to improve operational scores and products whilst preserving
the timeliness of its services. This can only be achieved by a combination of higher resolution models,
enhanced physical parametrization and more accurate numerical solvers, all of which require more
computing power. In particular, a significant benefit had been evaluated from improving the resolution
of the operational global model [from 19 to 30 vertical levels, from 90 km to 60 km in the horizontal].
The next generation of coupled climate model required a higher resolution ocean model component,
increasing the number of horizontal points by x6, with a target of completing 4 model years per day on
72 processors. Overall this leads to a need for an increase in processing power by a factor of an order of
magnitude.

It was essential to preserve existing code structure where possible to allow parametrization
enhancements already under development to be integrated into the code simply, to avoid the generation
of new errors and the need for repeats of costly development tests. For both operational and climate
models, it was vital to validate results obtained on the Cray-T3E in comparison with those on the
Cray-C90.

Although code development was performed on the Cray-T3E, it was important to retain the portable
capability already established for the UM. This now needed to include the option of running in either
MPP or shared memory modes.

2. Parallelisation in the Unified Model
2.1 Basics

Parallelisation is achieved by regular domain decomposition of the grid point array with message
passing between domains accessed through a generalised set of library interface routines (GCOM),
initially developed at SINTEF. Atmosphere and ocean model configurations of the UM adopt different
horizontal domain decomposition strategies: into 2-D arrays and 1-D rows respectively. Message
passing is minimised by the introduction of halos around each horizontal domain. Segments of global
rows and columns are allocated for each processor simply by dividing the global domain geometrically,
starting from the NW corner: each processor will command a similar, but not necessarily identical
number of points.

Early investigations with parallel code in the UM used PVM as the underlying message passing method.
In fact the very first runs of a parallel UM were achieved on a distributed network of Hewlett-Packard
workstations. Later development switched to Cray-specific message passing as performance was ramped
up to meet production targets. It was found that the overhead of the GCOM interface layer was
significant for some classes of data transfer and explicit alternatives were written directly with
Cray-specific message passing, but retaining the option of GCOM for portability. In particular a routine
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for swapping halo information between domains is frequently called and generalised, but needed to be
re-written for maximum efficiency.

Although the general strategy of domain decomposition was maintained through most of the code,
specific problems with global processes were resolved by solutions which involved a gathering and
re-scattering of data domains. At the top level of code a COMMON block is populated with information
depending on the processor configuration, ie the number of processors in x and y directions. The
position of each processor is identified with logical variables such as "atbase" and "attop”, and key size
information for both global and local arrays is also held.

The compiler changed from Fortran77 on the Cray-C90 to Fortran90 on the Cray-T3E, but none of the
extra features of Fortran90 were adopted beyond the Fortran77 extensions already normally available.
This was necessary to preserve a portable capability and to reduce the extent of code conversion. Hence
DO loop limits remain explicit. It was found to be advantageous to harmonise the use of DO loop limits
by adopting a common set of variables such as "START_POINT_NO_HALO" which could be used
generally at lower levels of the code once initialised at an intermediate control interface.

Owing to the need to introduce developmental changes in a large and evolving suite of software, code
for MPP was introduced under a compile time switch. This allowed a preliminary set of changes to be
included in the main body of code for bench-marking and other investigations before every functional
area affected by parallelisation needed to be completed.

2.2 Atmosphere model

Primitive equations for model dynamics are solved on a regular latitude-longitude horizontal grid with
hybrid vertical coordinates, using a conservative split explicit scheme with a Heun timestep for
advection. Second or fourth order accuracy is supported, the latter requiring a double width halo to cater
for the extra horizontal data dependency. Routines for gathering, scattering and swapping halo
information were written as general purpose routines and it is possible to make these changes simply in
the code. However, to minimize the extra costs of fourth order accuracy it was also found necessary to
tailor code locally to account for the extra halo width explicitly.

Filtering of model increments is performed for pole-ward rows, with an equator-ward extent dependent
on maximum wind speeds. This process was parallelised across global rows and vertical levels,
re-distributing the data globally.

Negative humidity amounts can be generated by the advection scheme and in the original non-MPP code
these are zeroed while retaining global budgets by sharing accumulated deficits over all points in the
layer. This is an expensive method for MPP code and an alternative scheme was developed in which the
deficit was distributed over an array of near neighbouring points, which would normally confine
calculations to the local or adjacent processor. Model physics parametrizations had few horizontal
dependencies and so domain decomposition was relatively straightforward. Exceptions were parts of the
boundary layer code and convective momentum transport, which required interpolation between wind
and temperature staggering on the Arakawa B’ grid. Most work concentrated on optimising single
processor performance for the compiler. The method of gathering over land points for physics
calculations of land processes was maintained for MPP coding, the only change needed being to identify
any all-ocean processors with no land points as special cases.
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The standard operational global model runs with 144 processors (16 N-S by 9 W-E) which is a
compromise between reducing communications between processors and improving the load balancing
of the physics. The latter depends on the geographical distribution of sunlit points for radiation
calculations and of thermodynamically unstable points for convection calculations.

Assimilation of observations was parallelised by first distributing observations across all processors for
preliminary processing, but with load balancing of horizontal interpolation of model increments
achieved over levels.

2.3 Ocean model

The ocean model domain decomposition is 1-D, ie divided into latitudinal rows. This limits the
maximum number of processors available for a model run to the number of rows: for the ocean

submodel within the current climate production model (HADCM3) this is 144 _

Filtering was found to lead to a strong loading imbalance and it was necessary to redistribute work, with
each vertical level of a filtered row being assigned to successive processors. Timings were originally
dominated by the Laplacian solver for streamfunctions, due to a high cost of communications, with halo
swapping and global sums being computed for each iteration of the solver. This was modified so that
each island summation was performed concurrently on different processors and requires that the number
of processors is at least as large as the number of islands for successful load balancing.

2.4 Atmosphere-Ocean coupled model

Atmosphere and ocean submodels run asynchronously within a single Fortran program, with a parallel
atmosphere submodel followed by a parallel ocean submodel, each using the same number of
processors. HADCM3 has different horizontal dimensions for atmosphere (96 columns by 73 rows) and
ocean (288 by 144) submodels. Each submodel has a separate array of primary data, which is swapped
at coupling intervals (usually 1 day). Coupling fields are gathered into a global domain for interpolation
to the grid of the new submodel before the integration proceeds. The coupling calculations here are
sequential, which impacts scalability, but coupling costs are less than 5% of the total elapsed time for a
standard climate run with 72 processors.

An alternative method of coupling using OASIS coupling software developed at CERFACS has been
introduced into the UM for coupling externally supplied models without needing to make extensive
changes to code. This technique spawns slave processes for atmosphere and ocean models,
synchronisation taking place with communication by unix pipes at coupling intervals.

2.5 Input/output

A distinctive feature of the UM system, labelled STASH, is the capability to extract a wide range of
model output fields with extra processing inside the model under user control. Output fields of global
domain were gathered onto a single processor and output to an expanding file. Most forms of STASH
processing involving time-meaning and spatial averaging were dealt with simply in this way. Most effort
was required in dealing with the output of lateral boundary conditions for regional models, extraction of
subsets of domains and timeseries of fields at individual grid points. In particular, interpolation of fields
for generating regional boundary conditions comprised was costly in comparison with sequential code
equivalents.
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Parallel I/O to a file was not found to be practical. Asynchronous I/O was attempted and used with some
success for a number of applications. However in an operational environment, difficulties with closing
of files before the next sequence in the suite led to a lack of robustness and this technique has not been
adopted for the current system. A number of other I/O changes, including re-structuring of output files in
a *well-formed’ format and pre-fetching of files led to significant savings.

2.6 Validation of migrated code

An assumed constraint for the MPP code structure is that model results should exactly compare at the bit
level for any number or arrangement (ie N-S:W-E split) of processors, and also against the non-MPP
single processor equivalent. This constitutes a strong test of the quality of coding and is a powerful tool
in exposing errors. In fact, a small number of minor errors in pre-existing non-MPP code became
apparent during the migration phase. A single exception to this constraint lies in code for assimilation of
observations, where the associated loss of efficiency would have been too great, and bit reproducibility
is achieved with different arrangemens of processors, but only for the same number of processors. The
main extra cost lies in the special treatment required for global sums, ensuring that results are added
from processors in the same order. It was found necessary to check model data states at the full 64 bit
precision of the model - standard UM data files compressed to 32 bit precision masked the onset of
departure of results. The constraint of ensuring compatibility between non-MPP and MPP modes for
model runs is likely to become less important in the future, once practical model configurations become
too big to fit into a single large memory (128 Mbytes) processor.

Model results for code migrated from Cray-C90 to Cray-T3E computers could not be compared exactly
because of the change from Cray to IEEE format number representation. A development suite was built
up on the Cray-T3E through 1997 to duplicate the operational system. Verification of meteorological
variables were compared to ensure that no gross changes had arisen. As development of the new suite
progressed, various optimisation changes affecting answers at the bit level were needed to meet timing
targets. It was found that virtually all verification comparisons were within the expected tolerance. The
only exceptions were small improvements in scores which have been attributed to using 64 bit
arithmetic for maths library functions, possibly with the extra precision of IEEE formatted numbers
adding further benefit.

Climate modelling studies place a greater reliance on close bit comparability of model results for
non-scientific modifications, since even minor systematic changes can lead to a climatological signal.
Validation was achieved by running a series of short control forecasts from initial states with minor
perturbations. The new model code - migrated to the MPP and optionally including optimisations - was
then run to check that its results fell within the control envelope. This was particularly effective when
the process was repeated, gradually stepping through individual modules during the first timestep, which
helped to identify departures in evolution.

3. Problems encountered during migration

In order to reduce costs, some calculations in halo regions were omitted, often with DO loops missing
out the first and last rows in local calculations over the horizontal domain. This led to occasional
inconsistencies and uninitialised data culminating in model errors. In particular, the treatment of
processors containing polar rows - with a halo beyond the polar row - generated problems for both
atmosphere and ocean models. This arose because of an implicit assumption for original code in both
models whereby polar values were updated with respect to dynamical but not to physical parametrisation
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calculations.

A few portability issues were raised. The increased precision but smaller range of IEEE versus Cray
format numbers exposed some conditional tests that were better handled by Fortran90 intrinsics. Fortran
NAMELISTs are used extensively in the UM but are not standardised effectively for different
compilers, and needed extra effort.

The UM has a fairly complex top level structure of Unix scripts that are required to handle the different
and extensive needs of operational and climate production running, including model compilation,
reconfiguration of model states, automatic post-processing and a capability for restarting interrupted
runs. This proved to be much slower in an MPP environment and required considerable revision of Unix
control scripts in order to reduce inter-process communications at the unix level.

/O costs were a major overhead for the model at the outset of the migration project but also, naturally,
varied with the details of system implementation, such as the level of disk striping and I/O cache
memory, as progressive upgrades were introduced. Together with the increasing volume of work
processed by the machine as more users migrated to the Cray-T3E, each change tended to affect timing
bottlenecks and load balancing requirements, making it difficult to identify which areas of code needed
the most effort. Also, since potential I/O savings were associated with relatively large code changes
within the model, such as for asynchronous I/O, it was difficult to evaluate their effect in advance.

Job scheduling of UM integrations for the variety of Met. Office users was found to be a challenging
task. The operating system is still evolving to make the best use of MPP resources for the combination
of large operational UM jobs running to deadlines with a set of background climate jobs running large
integrations and short term development needing a fast turnaround.

A set of early problems arose from model runs being suspended at a barrier through a conflict in
message passing. These occurred intermittently due to the variations in communications traffic from
other work on the machine. Errors of this sort were generally more difficult to track down and required
extra diagnostics to be included in an alternative message passing interface to identify specific
processors and messages. The general quality of proprietary and other diagnostic tools improved during
the migration period, which aided problem solving as the MPP model code matured.

4. Current developments

Having met initial operational timing targets, most work on the current UM is now concentrating on
single processor optimisation, since many opportunities remain for savings within physics
parametrisation codings. Effort on improving load balancing for specific code areas has continued. For
example sunlit grid points will be redistributed over processors for short-wave radiation calculations;
and a test for convecting points wiil be made to redistribute convection calculations over processors.
Load balancing for filtering in the ocean model is being improved by allocating work dynamically.
Division into segments of data - rather than just rows - enhances the balancing process, and it was found
that an assumption of work being proportional to the square of segment length provided a simple
estimate of processor load.

The main areas of new work lie in the introduction of two major new components into the UM:

variational assimilation (VAR) and a new semi-implicit non-hydrostatic dynamics, which are both in
advanced development but need to meet stringent accuracy and timing targets. These components have
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adopted the same parallelisation paradigm as the rest of the UM system, and will share message passing
library interfaces and routines where possible, but have required local solutions in their own
applications. In particular, VAR has made extensive use of Fortran90 constructs, which has provided
extra tests for MPP capabilities.

Acronyms

CPU: Central Processing Unit

GCOM: Generalised Communication package for message passing: a set of Fortran library
routines comprising a flexible interface between model code and the chosen method of message
passing.

HADCMS3: A specific coupled model developed at the Met. Office Hadley Centre for climate
prediction experiments, involving extended production running.

MPP: Massively Parallel Processing: signifies distributed memory in this context.

OASIS: Ocean-atmosphere coupling software developed by CERFACS in France.

STASH: System for processing model output diagnostics from the UM.

UM: Unified Model.

VAR: Variational Assimilation.
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Abstract

Current generation RISC microprocessors operate at clock frequencies ranging up
to 1 GHz with the ability to complete two or more floating point operations (flops)
per clock cycle. To sustain a significant percentage of peak performance, large
secondary L2 cache memories based on fast SRAM technology are essential. Sin-
gle processor optimisations are presented for the MC2 model code on the MIPS
R10000 and SUN UltraSparc II microprocessors. Ensemble forecast techniques for
high resolution mesoscale simulations are applied to assess the impact of aggres-
sive floating point optimisations on forecast accuracy. Parallel benchmarks of the
MC2 model (adiabatic kernel + physics) on the SGI/Cray Origin 2000 and Fujitsu
AP3000 are also presented. The relative efficiency of line relaxation preconditioners
for minimal residual Krylov iterative solvers is reported in the context of real-time
mesoscale forecasting.
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1. Introduction

The performance of RISC microprocessors continues to double approximately every eigh-
teen months according to Moore’s law and advances in semiconductor technology have
continued unabated for the past 30 years. There is every reason to believe that these
trends will continue at least in the short term. The current generation of pipelined RISC
processors includes the MIPS R10000, SUN UltraSparc II, DEC Alpha and HP-PA chips.
These processors operate at clock frequencies ranging up to 1 GHz with the ability to
complete two or more floating point operations (flops) per clock cycle. To sustain a
significant percentage of peak performance, code restructuring in combination with com-
piler and run-time optimisations must be applied judiciously. Sustainable floating point
execution rates are to a large extent determined by optimal use of the memory hierarchy.
Typically, secondary or level two (L2) cache utilisation must surpass 95% before large
performance gains are realized. Stride-1 memory references and cache blocking to pro-
mote data locality both serve to increase primary L1 and secondary L2 cache hit ratios.
Manual loop unrolling and interchanges will often expose instruction level parallelism
to the compiler. Given information about the memory hierarchy, a compiler can often
schedule instructions for pipelined execution and optimal cache usage. More aggressive
optimisations include floating point instruction re-ordering and reduced precision in math
libraries in exchange for increased speed. The most aggressive optimisations must be ap-
plied with care as they may seriously degrade the accuracy of a fluid flow simulation. It is
for this reason that we believe ensemble analysis techniques can be useful in assessing the
impact of optimisation strategies on atmospheric models which include complex physical
parametrisation packages.

RISC microprocessors, high-speed SRAM caches and high-bandwidth interconnection
networks form the building blocks of modern distributed and distributed-shared mem-
ory parallel computer architectures. In this paper we examine the performance of a
high-resolution mesoscale limited-area atmospheric model on the SGI/Cray Origin 2000
and Fujitsu AP3000 parallel computers using the Message-Passing Interface (MPI). The
Canadian MC2 is a fully compressible nonhydrostatic model based on second-order finite
differences in space and a three-time-level semi-implicit, semi-Lagrangian time discreti-
sation. The use of a terrain-following height coordinate results in a highly nonsymmetric
linear system to solve every time step for the pressure. Minimal residual Krylov solvers
have thus been implemented and the computational efficiency of the model using line re-
laxation preconditioners designed for both hydrostatic and nonhydrostatic flow regimes
is presented.
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2. MC2 Model Formulation

The Mesoscale Compressible Community (MC2) model is a fully compressible nonhydro-
static limited area atmospheric model used in Canadian Universities and Environment
Canada for mesoscale and microscale atmospheric research. A detailed description of
the adiabatic kernel and numerical formulation of the MC2 model with open boundaries
is given in Thomas et al. [9]. In particular, the model employs a semi-implicit semi-
Lagrangian time discretisation scheme and a non-orthogonal coordinate system based on
the terrain-following transformation

Z(X,Y,2)=H [Z—h(X,Y)]

H-h(X,)Y)

introduced by Gal-Chen and Sommerville [2], where h(X,Y’) is the height of topogra-
phy. Following standard conventions, the Jacobian G and metric coefficients G'/ of the
transformation are denoted

H-h 1 [z—h} oh oL [Z—h} oh

H
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Given a polar stereographic projection at reference latitude ¢ with map factor m =
(1 + sing)/(1 + sing), S = m? and Coriolis parameter f = 2Qsin ¢, the compressible
governing equations in projected X = (X,Y, z) coordinates become
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The contravariant vertical velocity W is related to the covariant velocity components by
the equation, W = G~'w + S( G¥U + G®V'). Potential temperature is © = Te™"?, and

= (p/po)" is the Exner function, where T =110, ¢ = In(p/po), po = 1000 mb. R and
¢, are the gas constant and heat capacity for dry air at constant pressure, Kk = R/c,. U,
V and w are the wind images in projected (X, Y, z) coordinates and g is the gravitational
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acceleration. K = (U% + V'%)/2 is the pseudo kinetic energy per unit mass. Momentum
(Fy, Fv, F,,) and heat @ sources or sinks are also included.

The semi-implicit scheme results in an elliptic problem to solve every time step for a
log pressure perturbation ¢’ about a stationary isothermal hydrostatic basic state. The
nonsymmetric system of equations resulting from a finite difference discretisation is solved
using the Generalized Minimal Residual (GMRES) algorithm of Saad and Schultz [3].
Skamarock et al. [4] use the mathematically equivalent GCR algorithm of Eisenstat et
al. [1] in a semi-implicit formulation of a compressible model (see also Smolarkiewicz
and Margolin {5, 6], Smolarkiewicz et al. [7]). The solver convergence criteria is based on
the RMS divergence or an estimate thereof, since it indicates when the discrete form of
the Gauss divergence theorem with open boundaries has been satisfied. Krylov subspace
methods are particularly well-suited to a distributed memory, message passing model of
computation since they rely primarily on distributed matrix vector multiplication and an
inner product implemented as a global reduction summation. Computational efficiency
(overall wall-clock time) is improved by finding a suitable preconditioner, which is often
problem dependent. The discretised elliptic operator in a nonhydrostatic pressure solver
will be dominated by the vertical terms when the aspect ratio AX/AZ is large. Therefore,
an effective preconditioning strategy is to invert the vertical components of the elliptic
operator and Skamarock et al. [4] apply a vertical alternating direction implicit (ADI)
line relaxation preconditioner.

A vertical ADI line relaxation preconditioner for the n x n linear system Azr = b is
based on the splitting A = H + V, where the H and V represent the horizontal and
vertical components of the discrete elliptic operator based on centered second-order finite
differences. The ADI iteration is derived from the pseudo-time integration of the heat
equation u; = Au+r to steady state, where the matrix A represents the discrete Laplacian
and

(I-BV)zttt = (I + B H)z" - Bb (2)

The largest possible pseudo-time step 3 is chosen so that the above integration scheme
remains stable. A slightly more implicit scheme can be constructed using a line Jacobi
relaxation scheme

Trf ' =zb  +2f +b,  i=1,...n (3)

where the index i represents an entire line of grid points. For the Poisson problem —Au =
7 on the 2D unit square, the matrix T = diag(A;+1, Ais, Ai—1,) is block tridiagonal,
where A;y1; = Ai—14, Aic1i and A; = Ti. Second-order centered finite differences
imply T; = diag(—1,4, —1). The vertical ADI scheme (2) splits and weights (with )

80



the diagonal terms of the discrete operator, whereas the line Jacobi scheme inverts the
diagonal and vertical off-diagonal terms of the operator. For nonhydrostatic problems on
isotropic grids, a fully 3D ADI preconditioner is implemented as in Skamarock et al. [4].
The solution of tridiagonal linear systems of equations implies global data dependencies,
thus a parallel data transposition strategy has been adopted in a distributed-memory
implementation of the 3D ADI preconditioner.

3. Parallel Performance

For a distributed-memory SPMD model of parallel computation, the V; x N; x N; com-
putational grid is partitioned across a Px x Py logical processor mesh. A domain de-
composition in the horizontal direction is employed due to the strong vertical coupling
in physical parametrisation packages and since the number of grid points in the vertical
direction is typically one order of magnitude less than in the horizontal. Each proces-
sor therefore contains N;/Px x N;/Py x Nj points, resulting in a near optimal surface
to volume grid point ratio for semi-Lagrangian advection and application of the elliptic
operator in the GMRES solver [8]. For both algorithms the communication overhead as-
sociated with boundary data exchanges between subdomains is minimal when compared
with computations. The 1D vertical ADI and Jacobi line relaxation preconditioners are
also well-suited to a horizontal decomposition, since the only global data dependency
is in the vertical direction within tridiagonal solvers. However, the 3D ADI precondi-
tioner requires global data in each of the three coordinate directions in order to solve
tridiagonal linear systems of equations during each ADI sweep. Thus, the right-hand
side b and solution z*¥ must be re-mapped to perform line relaxations in each coordinate
direction in turn. Such a re-mapping takes the form of a data transposition algorithm
requiring collective MPI all-to-all communication of O(N?) grid points. Vertical sweeps
in the Z direction are performed using the domain decomposition described above. Each
processor contains N; x N;/Py x Ni/Px grid points for sweeps in the X direction and
N;/Py x N; x Ni/Px points in the Y direction. ADI sweeps progress from left to right
and then right to left as indicated below with arrows representing communication steps.

Ny, N; N; N N; Ny
o 2 X =L x — 22w N, x —
PXXPYXN" & NxPnyx = Pyx JxPX

To compare the computational efficiency of the model using the parallel 1D Jacobi and 3D
ADI line relaxation schemes, a quasi-hydrostatic test case was run on an SGI/Cray Origin
2000 computer with sixteen 195 MHz R10000 processors each containing a 4 MB L2 cache.

81



The purpose of our test was to determine if the communication overhead associated with
the data transposition strategy would adversely affect the computational efficiency as the
number of processors is increased. A 120 x 120 x 35 grid at 2.5 km horizontal resolution
with model lid set at 23 km was employed in a mesoscale forecast over the British
Columbia lower mainland. The 30 hour forecast using the MC2 model was run with
version 3.5 of the Recherche en prévision numérique (RPN) physics package including
radiation and stratiform condensation parametrisations. The integration consisted of
1800 time steps of length At = 60 sec using both 1D and 3D preconditioners and the
results are summarized in Table 1 using single processor optimisation level 3 (described
in section 4).

PyxPy 1x1 2x2 2x4 3x4 4x4
1D Jacobi 29:.09 7:18 3:34 2:37 2:00
3D ADI 32:51 8:13 3:38 2:42 2:19

Table 1: MC2 execution time on SGI/Cray Origin 2000 (hrs:mins)

Despite the fact that the 3D ADI preconditioner results in a much faster convergence
rate for the GMRES solver, the overall model execution times are very close. Since the
grid aspect ratio AX/AZ for this problem is O(10), the 1D line Jacobi scheme is still
competitive. Moreover, the data transposition overhead appears not to adversely affect
performance up to 16 processors.

4. Single Processor Optimisations

To assess the impact of aggressive compiler optimisations on forecast accuracy, three
optimisation levels were identified for version 7.1 of the SGI MIPSpro compiler and
linker, targeted for version IP27 of the MIPS R10000 microprocessor. These compiler
options were tested with 195 MHz and 250 MHz versions of the processor on an Origin
2000 computer equipped with either 1IMB or 4MB L2 caches.

Optimisation Level 1 (O1)

FFLAGS = -n32 -mips4 -r10000

% mpif77 -1lm -lblas -o prog.f
% mpirun -np 4 mc2.Abs
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Optimisation Level 2 (02)

FFLAGS = -n32 -mips4 -r10000 -02 -align32 \
-TARG:platform=ip27:processor=ri10000 \
-IPA:alias=0N:addressing=0N:opt_alias=0N \
-LNO:opt=1:optimize_cache=1:cs1=32K:1s1=32:assoc1=2:mp1=10:cs2=1M:1s2=128:\
assoc2=2:mp2=10:cs3=512M:1s3=0:is_mem3=0N:cs4=0 \
~0PT:pad_common=0N:inline_intrinsics=0N:cray_ivdep=TRUE

% mpif77 -IPA -multigot -1m -lblas -o prog.f
% fpmode performance fpmode spec mpirun -np 4 mc2.Abs

Optimisation Level 3 (O3)

FFLAGS = -n32 -mips4 -r10000 -03 -align32 \
-TARG:platform=ip27:processor=r10000 \
-IPA:alias=0N:addressing=0N:opt_alias=0N \
—LND:opt=1:optimize_cache=1:cs1=32K:lsl=32:assocl=2:mp1=10:cs2=1M:1s2=128:\
asso0c2=2:mp2=10:¢s3=512M:1s3=0:is_mem3=0N:cs4=0 \
-0PT:pad_common=0N:inline_intrinsics=0N:cray_ivdep=TRUE

% mpif77 -IPA -multigot -lfastm -lblas -o prog.f
% fpmode performance fpmode spec mpirun -np 4 mc2.Abs

A small number of manual code optimisations are applied to promote stride-1 access and
cache-blocking in the adiabatic kernel of MC2. In addition, optimised BLAS subroutine
libraries were specified at load time. In-line directives and options were applied to the
physical parametrisation package to handle aliasing and loop dependencies assumed by
the compiler in the case of some dynamically allocated arrays. The first optimisation level
(O1) instructs the compiler to use 32-bit arithmetic with the MIPS 4 instruction set on
the R10000 processor. The next level of optimisation (O2) permits a restricted amount
of floating-point instruction re-ordering, 32-bit alignment, common block padding to pre-
vent cache thrashing and explicitly defines the memory hierarchy (cache size, line size,
associativity) of the target machine to aid in instruction scheduling. Interprocedural
analysis is applied to improve both instruction and data cache usage through code move-
ment. The most aggressive level of optimisation (O3) permits floating-point instruction
re-orderings that could adversely affect the precision of certain computations such as di-
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Figure 1: Real run times for different optimization levels and processor configurations.
CPU times are shown in (a), and the improvement over the lowest optimization level
(01) is shown in (b).

vision. Fast math libraries can also be employed and here again precision may be reduced
in exchange for speed.

In order to evaluate these optimisations in the context of a real-time mesoscale forecasting
system, the computational domain and related run-time parameters were taken from
daily runs of the University of British Columbia (UBC) ensemble forecasting system
(http:/ /spirit.geog.ubc.ca/ model). Horizontal resolution is 10km at 60°N with the model
lid at 19km. The grid contains 120 x 70 points on 35 terrain-following levels, implying
the run is quasi hydrostatic with AX/AZ = 20. Vertical line Jacobi preconditioning is
therefore applied in all our tests. Initial and boundary conditions are obtained from a
coarse grid (AX = 30km) MC2 run starting at 00UTC 27 November 1997. A 42 hour
integration requires 1260 time steps of length At = 120sec. A forecast initialized 06UTC
97 November 1997 was chosen as a benchmark since it is a representative mesoscale case
for the British Columbia lower mainland. In particular, it exhibits typical fall and winter
characteristics, including moist, south westerly flow at low levels, a persistent upper level
trough offshore, and dynamically forced precipitation enhanced by steep topography.
The dynamic forcing came from a weak surface cold frontal passage supported by a short
wave trough aloft. Upstream boundary wind speeds were on the order of 10ms~! at the
surface.

Wall-clock execution times (including input/output) are shown in Figure la and per-
formance data for each optimisation level is presented in Tables 2 - 4. The machine
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configuration is an Origin 2000 with four 195 MHz R10000 processors equipped with 1
MB L2 cache. Flop counts are derived from hardware counters available on a NEC SX-4
vector supercomputer at the Canadian Meteorological Center (CMC). Note in particular
that in all cases the L2 cache utilisation is below 90% and that single processor perfor-
mance does not exceed 65 Mflops/sec. Figure 1b displays the percentage improvement
in wall-clock time (up to four processors) for optimisation levels O2 and O3 compared
to level O1. The plot confirms that optimization levels O2 and O3 produce similar
improvements for all processor configurations.

Px x Py 1x1 1x2 1x3 2x2
Wallclock 31395 16666 11169 8034
User 30975 16339 10828 7879
MFLOPS/sec 53.6 101.5 153.2 210.6
MFLOPS/sec/PE  53.6 50.8 51.1 52.6
L2 hit rate 0.843 0.880 0.881 0.892

Table 2: Optimisation Level O1, 195 MHz R10000 + 1 Mb L2 cache.

Px x Py 1x1 1x2 1x3 2x2
Wallclock 28597 14593 9707 7420
User 28223 14341 9449 7252
MFLOPS/sec 58.8 115.7 175.6 228.8
MFLOPS/sec/PE  58.8 57.8 585 7.2
L2 hit rate 0.845 0.886 0.893 0.891

Table 3: Optimisation Level 02, 195 MHz R10000 + 1 Mb L2 cache.

Px x Py 1x1 1x2 1x3 2x2
Wallclock 26862 13919 8769 7099
User 26828 13679 8578 6935
MFLOPS/sec 61.8 121.3 1934 239.2
MFLOPS/sec/PE  61.8 60.6 645 59.8
L2 hit rate 0.838 0.885 0.893 0.894

Table 4: Optimisation Level O3, 195 MHz R10000 + 1 Mb L2 cache.
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Py x Py 1x1 1x2 1x3 2x2 2x4 3x4

Wallclock 21360 10813 7165 5416 2841 2035
User 21180 10740 7051 5344 2744 1949
MFLOPS/sec 78.3 1545 2353 3104 604.6 851.2

MFLOPS/sec/PE 783 772 784 762 756 709

Table 5: Optimisation Level O3, 195 MHz R10000 + 4 Mb L2 cache

The benchmark case described above has also been run on an Origin 2000 with up to
sixteen 195 MHz R10000 processors configured with 4 MB L2 cache and the results are
reported in Table 5. A significant increase in the cache utilisation (over 97%) is obtained
when moving to the 4 MB L2 cache and per processor performance increases accordingly
to just under 80 Mflops/sec or 20% of peak when using optimisation level O3. With
the recently released 250 MHz R10000 chip, a further 20% improvement in per processor
performance has been observed in our benchmarks. In particular, MC2 achieves over 105
Mflops/sec on this processor in combination with the 4 MB L2 cache, although L2 cache
utilisation drops back down to 92%. For comparison, the 10km benchmark was run on a
Fujitsu AP3000 with 2 processors per SMP node. This machine is based on the 300 MHz
SUN UltraSparc II processor with 2 MB L2 cache, a proprietary high-speed memory
architecture and 2D torus interconnect. Compiler options are given below (including the
memory hierarchy specification) and performance data 1s summarized in Table 6.

FFLAGS = -04 -dalign -xarch=v8plusa -xchip=ultra \
-fsimple=2 -xdepend -xlibmil -xlibmopt -xsafe=mem \
-xcache=16/32/4:2048/32/1

Px x Py 1x1 1x2 1x3 2x2 2x4
Wallclock 25163 12706 8820 6905 4054
User 24853 11986 8071 6152 3023
MFLOPS/sec 66.8 138.4 205.6 270.0 548.8

MFLOPS/sec/PE  66.8 69.2 685 67.5 686

Table 6: Fujitsu AP3000, 300 MHz AP3000 + 2MB L2 cache
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5. Meteorological Results

a. Evaluation Methods

The effect of RISC compiler and run-time optimizations on the accuracy of high resolution
mesoscale forecasts is still a largely unexplored subject. One possible way of studying
these effects is to generate an ensemble of forecast runs, regarding optimisation as a
possible source of errors or perturbations. Given three optimisation levels and four pro-
cessors, a simple way to produce an ensemble is to run the same meteorological test case
12 times, varying optimization levels and processor configurations, as described above.
The 12 runs comprise an ensemble and standard analysis techniques can reveal error
growth and forecast spread as a function of optimization and floating-point instruction

re-ordering.

Forecast spread, rather than error values, will be emphasized for two reasons. First, a
control run to characterize deterministic model error is not available. In ensemble fore-
casting, a control run is often the categorical forecast, initialised with a best guess analysis
and perturbing this analysis gives initial conditions for the cther ensemble members. En-
semble forecasters then look for forecast spread and a reduced ensemble-averaged error.
Looking for error reduction will not provide insight into the problem at hand. Although
compiler optimisations can be considered as perturbations, the analogy should not be
extended too far since the initial conditions are not perturbed. A single processor run
without any optimization could be taken as the control run since it may be what the
model developers intended, but given codes of such complexity this is difficult to quan-
tify. Second, one case study can not determine the statistical properties of the ensemble
in a robust sense. Thus, it is unwise to select a top performer in this experiment, or to
average the results looking for an improvement. However, significant deviation of one
group of forecasts from the others indicates that caution is warranted.

Each ensemble member is initialized identically and common boundary conditions are
applied throughout the 42h integration period. The 00h forecasts deviate from each
other slightly because grid staggering and destaggering require calculations that are han-
dled differently depending on optimization and processor configuration. Boundary value
determination is subject to the same errors and by examining the spatial distribution of
forecast spread such effects can be quantified. To evaluate the error in each run, model
forecasts of temperature, mean sea level pressure (MSLP) and 12h accumulated precip-
itation are compared with surface observations from weather stations operated by the
Canadian Atmospheric Environment Service (AES). Observation error was not consid-
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Figure 2: RMS error at each forecast hour for surface temperature (column 1), MSLP
(column 2) and 12h accumulated precipitation (column 3). The legend indicates curves
for 3 optimization levels and the number of processors employed is shown on each plot.
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ered and the observations are subject to AES quality standards. A cubic polynomial is
used to interpolate temperature, MSLP, and precipitation values from the model grid
to observation sites. Errors are evaluated by averaging over every available station site
at each 6h interval. At least 50 stations were available for verification at these times.
RMS results are therefore the average RMS over all the stations reporting within the
model domain. Although the model domain is three dimensional, a surface comparison
can identify significant discrepancies in the forecasts. The results will not provide infor-
mation about spatial distribution of errors, but will show the error differences and thus
average forecast differences.

b. Ensemble Results

Results for the entire ensemble are shown in Figure 2. It is clear that at forecast times
greater than 6 hours, every run with full optimization (O3) significantly deviates from
the rest of the ensemble with respect to MSLP and temperature. Because error spreads
between different processor configurations are too small to observe on these plots, each is
shown on an individual plot. These are negligible compared to the deviations present in
the O3 runs. The decrease in temperature error over the first 6h of forecast is a result of
the improved resolution from the initial conditions specified at 30km to the 10km model
domain. Precipitation spread is negligible when compared to the total model error. The
maximum at 36h is a property of only this forecast and would disappear with several
forecasts over different time periods.

The spatial distribution of forecast spread can be understood by looking at the station
and gridded results. Figure 3a and b show the maximum temperature and MSLP dif-
ferences between any two forecasts after 42h of integration, interpolated to station sites.
Temperature differences range from 1°C near the upstream boundary to 4°C near the
downstream boundary, with a general increasing trend from west to east. A similar trend
is evident in the MSLP differences, which range from Omb in the southwest to 4mb in
the northeast part of the domain. Thus, numerical errors accumulate for air parcels with
longer residence times in the domain.

Figures 3c and d, show the difference in gridded fields between ensemble members 1
(O1PE1) and 12 (O3PE4), also after 42h of integration. For comparison with Figures 3a
and b, surface temperature and MSLP differences are shown. These two members are
responsible for many (but not all) of the maximum differences at station sites. The
increasing differences toward the downstream boundary are clear. It is worth noting that
the spatial distribution of the differences does not show this property at the 00h forecast
time. Rather, the differences are evenly distributed and resemble numerical noise. The
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Figure 3: Spread between ensemble members. The maximum forecast spread in surface
temperature (°C) (a) and MSLP (mb) (b). Gridded spreads between ensemble members
1 (O1PE1) and 12 (O3PE4) for temperature (c) and MSLP (d) are also shown.
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features shown here develop through the forecast period. The differences in the gridded
fields approach zero at all the boundaries except the outflow boundary. This is evidence
that the boundary formulation is not significantly affected by the different optimization
levels and processor configurations. Error must have time to accumulate during the
integration and the common boundary conditions result in small boundary differences
even at the end of the forecast.

6. Conclusions

Our performance studies indicate that fully 3D implicit methods based on minimal resid-
ual Krylov iterative solvers and line relaxation preconditioners work well on distributed-
shared memory architectures such as the SGI/Cray Origin 2000. Perhaps the best way to
evaluate the impact of code optimisation strategies for RISC microprocessors on atmo-
spheric flow simulations is by using theoretical test cases with analytic or known solutions.
In such cases, a loss of precision can be isolated and easily corrected. With a fully con-
figured atmospheric model interfaced to complex physical parametrisation packages, the
task is more difficult. One possible approach is to view aggressive compiler optimisations
as a possible source of floating point errors or perturbations of the initial and boundary
conditions. Ensemble forecast techniques can then be applied to evaluate if a trade-off
between accuracy and performance is within acceptable bounds.

It must be emphasized that it is impossible to know a priori which level of optimization is
most accurate since this is code and platform dependent. However, significant deviations
over several forecasts indicates caution should be exercised when applying optimizations.
Such effects should be quantified and closely examined in either an operational or research
environment. The results shown in Figure 2 and Figure 3 suggest that compiler and run-
time optimization can have a significant impact on short range forecasts. RMS errors
can deviate by more than 25% of the total error for surface temperature and MSLP. The
O3 error is at times less than the O1 and O2 error and thus the only way to characterize
accuracy is by running similar ensembles over many forecast periods. Obtaining a ‘best’
forecast from one case is unwise. Error spreads of similar magnitude will likely occur in
many other meteorological cases, but the value of the error and the rank of each ensemble
member will vary.

Forecasting implications of these differences should not be ignored. Both the MSLP
and surface temperature differences are large. For example, four degree temperature dif-
ferences are well above the accuracy required to determine precipitation phase (solid or
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liquid) in many instances. This can translate to thousands of dollars wasted by poor plan-
ning for industry, agriculture and government agencies that depend on accurate weather
information. A 4 mb MSLP difference will affect wind forecasts, which are equally as
important. Although only surface impact is addressed here, the dependency of surface
parameters on the upper air conditions suggest effects aloft are just as great. Further-
more, the nonlinear nature of the atmosphere and further accumulation of optimization
errors will cause the differences in forecasts to grow with forecast duration. Thus, similar
analyses of medium range forecasts (3-10 days) would show a much larger spread between
forecasts, due to compiler optimization.

Acknowledgements

The authors would like to thank Piotr Smolarkiewicz from NCAR/MMM for his interest
and encouragement to find better preconditioners for minimal residual Krylov solvers.
An A-grid version of a line Jacobi scheme was first tested in the EULAG model [6]. In
the near future we also hope to benchmark MC2 on the NCAR HP /Exemplar SPP 2000
DSM with support from Steve Hammond and SCD. We would also like to thank SGI,
Fujitsu and the Canadian Meteorlogical Center for providing dedicated computer time.

92



References

[1] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for
nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 2 (1983), pp.
345-357.

[2] T. Gal-Chen and R. C. Sommerville. On the use of a coordinate transformation for
the solution of the Navier-Stokes equations. J. Comp. Phys, 17 (1975), pp. 209-228.

[3] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput, 7 (1986), pp.
856-869.

[4] W. C. Skamarock, P. K. Smolarkiewicz and J. B. Klemp. Preconditioned conjugate-
residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Wea. Rev.,
125 (1997), pp. 587-599.

[5] P. K. Smolarkiewicz and L. G. Margolin. Variational solver for elliptic problems in
atmospheric flows. Appl. Math and Comp. Sci., 4 (1994), pp. 527-551.

[6] P. K. Smolarkiewicz and L. G. Margolin. On forward-in-time differencing for flu-
ids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos.
Ocean. , Special Vol. XXXV, no. 1, (1997), pp. 127-152.

[7] P. K. Smolarkiewicz, V. Grubisi¢ and L. G. Margolin. On forward-in-time differenc-
ing for fluids: Stopping criteria for iterative solutions of anelastic pressure equations.
Mon. Wea. Rev., 125 (1997), pp. 647-654.

[8] S. J. Thomas, A. V. Malevsky, M. Desgagné, R. Benoit, P. Pellerin and M. Valin.
Massively parallel implementation of the mesoscale compressible community model.
Parallel Computing, 23 (1997), 2143-2160.

[9] S. J. Thomas, C. Girard, R. Benoit, M. Desgagné and P. Pellerin. A new adiabatic
kernel for the MC2 model. Atmos. Ocean., to appear (1998).

93



94



Author: Giri Chukkapalli
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-5608
giri @sdsc.edu

A Theoretical and Experimental Analysis of Parallel Complexity of Weather and Climate Algorithms using
the Shallow Water Benchmark Suite

In this paper, we evaluate the parallel complexity of weather and climate algorithms with the help of the governing
equations and the initial-boundary conditions (I.B.V.P). We define a true measure of simulation efficiency which
encompasses various partial measures of efficiencies such as parallel speedups. With this definition in mind, we
evaluate the advantages and disadvantages of various spatial and temporal discretization schemes in mapping the
weather and climate dynamics onto the massively parallel computers. Using this analysis, a conservative, semi-
implicit, weak Lagrange-Galerkin (WLG) Finite Element (FE) scheme on unstructured spherical triangular grid is
developed to solve the well-accepted shallow water benchmark problem. Results from various benchmark tests
show that the current algorithm is sequentially efficient and accurate. The code is parallelized both in shared
memory (P4) and message passing paradigm (MPI). The parallel computation partitioning strategy is designed to
achieve good load balance and minimize interprocess communication. By overlapping communications and
computations, the communication latencies resulting from the Lagrange-Galerkin algorithm are minimized, thereby
achieving good parallel speedups. Results from a wide range of parallel platforms including Cray T3E(260), HP
Exemplar(256), IBM SP2(128), Berkeley NOW(100), SGI power, challenge(32) and KSR1(32) show that the
present parallel algorithm is efficient, portable, and scalable. Using a timeline analysis of the present algorithm, we
identify the reasons for parallel performance degradation and provide possible remedies for minimizing it. We
address the design issues that need to be considered for the code to be efficiently portable.
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1. Introduction:

The navy operational global atmospheric prediction system (NOGAPS) is the heart of
the Fleet Numerical Meteorological and Oceanographic Center (FNMOC) operational
NWP support to all branches of the Department of Defense. The Naval Research
Laboratory (NRL) is responsible for NOGAPS design and computer implementation.
NOGAPS has been operational at FNMOC since 1982 and has been through several
computer system upgrades and design changes during that time. The spectral forecast
model component of NOGAPS (1] is similar in formulation to global models run at
other major operational NWP centers around the world. Operationally it runs multi-
tasked on a Cray C90 using 10-15 processors with a sustained performance of 400
Mflops/processor. The operational resolution is currently T159L30. In addition to the
operational application NOGAPS is run by NRL scientists at a variety of lower res-
olutions for coupled atmosphere/ocean modeling research, data assimilation studies,
long-term integrations such as AMIP, and singular vector/adjoint model research.

Price/performance considerations are driving many supercomputer applications away
from expensive vector architectures and toward scalable architectures built around
commodity-based components. Numerical weather prediction models such as the
NOGAPS spectral forecast model is an example of such an application. FNMOC
is currently planning a switch to a scalable architecture for their primary computa-
tional resource over the next 2-3 years, and NOGAPS is the most prominent applic-
ation to be ported to the new system. In anticipation of a new operational platform
for NOGAPS, a distributed memory NOGAPS based on message passing (MPI) has
been developed and is being tested and optimized. In part 2 of this report the design
criteria and priorities of the new code are discussed. Part 3 describes the design of
the computationally intensive spherical harmonic transforms. Part 4 discusses some
overall model performance issues and load balance problems. Part 5 presents some
conclusions, lessons learned, and future plans.

2. Design objectives:

Because of uncertainty in the commercial marketplace for the new architectures, port-
ability among candidate systems is a high priority in the new code. Single node
performance is also being emphasized because diabatic processes dominate the com-
putational cost of NOGAPS, and these are embarrassingly parallel. An important
consideration of the new code is to retain as much of the current C90 vector code as
possible, for two reasons: (a) we do not want to recode the 30-40 thousand lines of
code that make up the model’s diabatic processes, and (b) multiple processor shared
memory “nodes” are likely to be part of many next- generation systems, and existing
parallel vector codes should port gracefully to them. Specifically, this means we pre-
serve the “long-vector” legacy of the past as much as possible, although the code has
runtime granularity factors that allow control of actual on-processor array sizes and
loop lengths. We believe the potential performance penalties this strategy will impose
on cache-based processors will be minor.
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The first application of the scalable NOGAPS will be as a benchmark code for a
FNMOC procurement. Therefore portability across a wide spectrum of potential
platforms is essential. Message passing (MPI) is the obvious choice to maximize this
portability. The proposed OpenMP standard for on-node shared memory architec-
tures is being anticipated, but not yet implemented. The ultimate goal is to have
a single code which can run as a pure MPI application on a single processor/node
MPP platform, a hybrid MPI/OpenMP application on a distributed shared memory
system, or as a purely shared memory application similar to the current C90 paral-
lel/vector code. The main motivation for this is configuration management; we cannot
maintain separate NOGAPS codes for three different architectures. Some overhead
in computational cost and memory is inevitable with such a generalized code, but we
are prepared to accept this.
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Figure 1: Spherical harmonic transforms on the T3E, showing scaling performance
for a variety of spectral resolutions and processor numbers.

3. Spherical harmonic transforms:

Other authors [2, 3] have described parallel versions of the spherical harmonic trans-
form. A common approach is the transpose method, where all communication is
confined to matrix transposes that organize data so that all computation can be “on-
processor”, ensuring bit reproducibility of results for varying numbers of processors,
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a vital property for model validation and debugging. The NOGAPS transforms are
similar in design to those of other groups, but we have coded them with several dif-
ferent MPI communication modes to allow performance comparisons on a variety of
platforms. Specifically we have compared explicit send/recv matrix transposes using
combinations of blocking, unblocking, synchronous, and non- synchronous MPI, as
well as the mpi_alltoall collective function. Fig. 1 shows some of these results for a
range of spectral resolutions and processor numbers on the Cray T3E. Fig. 2 shows
a breakdown for one spectral resolution (T213), showing how the FFT, Legendre
transform (BLAS matrix multiply), and communication scale for the same range of
processor numbers.
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Figure 2: FFT, Legendre transform (BLAS SGEMM), and communication times for
T213L32

4. Overall model performance:

Table 1 shows NOGAPS running times for both the T3E and Origin 2000 for a range
of processor numbers. The results show relatively poor scaling going from 60 to 120
processors on the T3E and also from 30 to 60 processors on the 02000. This was
largely due to poor load balancing, primarily in the cumulus parameterization and
longwave radiation, and terrible scaling for the communication, particularly on the
02000. The latter problem is clearly a top priority as we continue development of the
new model. The load balance problems are solvable with a more elaborate interleaving
of latitude and longitude bands in the Gaussian grid point fields.
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Table 1: T3E/O2K T159 NOGAPS performance (48 hr forecast, time in secs)
T3E/p30 T3E/p60 T3E/pl20 0O2K/p30 O2K/p60

Total: 3780 2100 1400 4589 3242
Diabat: 1357 790 575 1171 905
Cumulus: 366 196 150 226 125
Lwrad: 100 78 88 167 297
Swrad: 169 86 44 98 48

Comtrans: 633 358 234 1295 1039
Comlwrad: 16 35 64 124 273

Table 2 shows single node performance for a quite small (T21) NOGAPS, chosen
to fit on the relatively small T3E on-node memory. The model is essentially the current
operational code, highly vectorized for the C90, although at this resolution the average
vector lengths are quite short. Perhaps the most conspicuous result is the relatively
poor performance of the T3E relative to the DEC ALPHA. In spite of a 50% faster
processor speed, the smaller cache of the T3SE ALPHA processor cause substantially
poorer performance then the DEC.

Table 2: T21L18 NOGAPS single node performance (24 hour fest, time in secs)
ALPHA 300 SMP ALPHA 450 T3E 02000 Cray C90

Total: 106.4 192.8 115.6 32.0

Trans: 9.7 25.6 12.0 3.6

Diabat: 914 162.0 100.1 26.2

Cumulus: 94 124 13.2 3.9

Lwrad: 27.2 56.4 32.7 6.7

Swrad: 23.4 30.0 22.5 5.4
5. Summary:

We have begun the process of converting a large operational NWP model code, optim-
ized for a parallel vector architecture, to a yet to be determined scalable architecture.
The code is as general as possible to ensure reasonably graceful porting to a variety of
candidate architectures and programming models. Some inefficiencies are inevitable
with this philosophy, but if we understand the reasons for these problems, we believe
future refinements of the model will eliminate them. An important point to be made
is that no effort has yet been made to redesign the model for more optimum perform-
ance on a distributed memory, cache-based microprocessor system. Specifically, the
model carries its time level histories in spectral space, rather than Gaussian grid point
space. This conserves memory, but generally requires more transform operations per
time step. On shared memory vector platforms such as the C90 this is an attractive
design strategy, since transforms are relatively cheap, but on distributed memory ar-
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chitectures there is a considerable penalty in both computational and communication
cost with this approach. The model also preserves a rich complement of in-line global
diagnostics which are critical for monitoring meteorological performance but would
be an expensive luxury in a scalable production code.

One of the greatest challenges of moving to these scalable architectures is accepting
the fact that these systems are not all-purpose, and many of the “whistles and bells”
that our models now contain will have to be removed, or at least made optional. This
has potentially important impacts on the user-friendliness of many models which are
often run by relatively naive users. NOGAPS is such a model, and we cannot ignore
the implications on software design and configuration management.
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ABSTRACT

The Fleet Numerical Meteorology and Oceanography Center (FNMOC) in Monterey
currently runs a suite of meteorological and oceanographic (METOC) analysis and
forecast models on Cray C90 and J90 mainframes. These models, which provide
METOC support throughout the Department of Defense, are becoming obsolete as their
resolutions and physics packages are limited by current operational computer hardware
architecture. The Navy also faces the challenge of implementing more skillful models.
Fortunately for the Navy, the science and technology of numerical modeling has kept
pace with computer hardware. The chief impediment to instituting improved models is
acquiring a larger computational capability in which to run them.

FNMOC is now formalizing plans to replace its aging vector processing architecture with
a scaleable system. This new system will provide an affordable, phased approach to meet
FNMOC’s new computational requirements. Next generation models executing on this
replacement system will providle FNMOC’s customers with more skillful and longer
range METOC forecasts. Improvements will be the result of better physics, higher grid
resolutions, and full coupling of air, ocean, wave, and ice models.

INTRODUCTION
Mission

The mission of FNMOC is “to combine innovative technology with the best available
science in order to provide the best weather and oceanographic products, data and
services to the operating and support forces of the Department of Defense, anywhere,
anytime” (FNMOC [1]). FNMOC provides these services continuously in order to
increase safety of forces and to optimize the use of platforms, weapons, sensors and
facilities.

Keys to its mission are responsiveness and quality. To do this, FNMOC maintains its
competitive abilities by applying better physics to models on a regular basis. Better
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physics usually means more calculations are required, resulting in longer model run
times. Model improvements are also made by decreasing the computational grid spacing,
allowing a model to resolve smaller scale features in the ocean or atmosphere. Reducing
a model’s grid spacing while maintaining the same geographic domain has two affects: it
increases the amount of computer memory required, and it increases model run time. The
capacity of a given computer architecture thus effectively limits the size and number of
models that can be run.

Over the life cycle of FNMOC’s current Cray/workstation computer center, there has
been a metamorphosis of sorts. As models were implemented and incrementally
improved, the host computers were also upgraded with better operating systems, more
memory, and additional processors. There is a point though when hardware
improvements are either not possible or no longer cost effective. As FNMOC’s hardware
system becomes saturated and future improvements are no longer economically viable,
the entire hardware/software system will become static. Hardware vendors in pursuit of
newer technology may no longer be willing to support “older” systems. The current
configuration at FNMOC will thus come to the end of its life cycle. To remain
competitive, a computing capability with more memory and better technology will be
needed.

CAPABILITIES

The product list in Table 1 shows examples of tailored applications that use FNMOC
meteorological and oceanographic products. Model fields are also transferred
electronically directly to customers for use onboard ships, at regional Navy forecast
centers, and other government agencies.

Product Required Input

Optimum Aircraft Routing Services Meteorological and Oceanographic Model Products
Optimum Track Ship Routing Services Meteorological and Oceanographic Model Products
Tropical Storm Predictions and Warnings Meteorolo‘gical and Oceanographic Model Products
High Winds and High Seas Warnings Meteorological and Oceanographic Model Products
Precipitation Products Meteorological Model Products

Refractivity Conditions and Ducting Ranges Meteorological Model Products

Underwater Acoustic Support Oceanographic Model Thermal Structure Products
Support Low Level Atmospheric Release Meteorological Model Winds

Predictions

Search and Rescue Oceanographic Model Surface Currents, Winds

Table 1. Warfighter Support.
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EXISTING HARDWARE
AND SOFTWARE CONFIGURATION

HARDWARE CONFIGURATION

FNMOC's current computer hardware system is anchored by a sixteen processor Cray
C90 with 256 Mwords of memory. The C90 is complemented by two eight-processor
Cray J90s, each with 512 Mwords of memory. One of the J90s is used as the primary
relational data base management system server, while the second provides a bridge
between the C90 and peripheral systems, runs applications and hosts a capability for
running lower resolution METOC models in a backup mode. Seventy-one Sun
SparcStations round out FNMOC's computing environment. These workstations perform
a myriad of functions including: communications, data base servers, applications, and
development. These Sun computer systems range from 12-processor, 1024 Mbyte
SPARCCenter 2000Es, to SPARC 10 desktop workstations. Figure 1 depicts the
FNMOC computer architecture.

CRAY C30/16256
256 MW SSD & 82 GB DISK Storage oK

2.4 TBTape Sterage

CRAY
J9188-512

————,

STK 8310
Powderhomn
4.8 TE Tape Storage

Figure 1. FNMOC Computer Architecture. DEVOFS is the developmental file server, OFS is the
unclassified operational file server, and OFSC is the classified operational file server. All three are
SparcStations. DPS, the distributed processing system, is a suite of workstations which provide the
primary communication interface to customers.
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MODEL SOFTWARE DESCRIPTION
The major models now operational at Fleet Numerical are briefly described here.
Meteorological Models

NOGAPS - The Navy Operational Global Atmospheric Prediction System (NOGAPS)
model is a global spectral numerical weather prediction model (Hogan and Rosmond [2]).
NOGAPS employs state-of-the-art data quality control, data assimilation, nonlinear
normal mode initialization, and atmospheric physics to produce skillful medium-range
weather forecasts. NOGAPS generates several thousand operational fields per day,
including surface winds and heat fluxes to drive ocean models and lateral boundary
conditions to support regional atmospheric models. In one way or another, NOGAPS
output supports nearly every operational application run at Fleet Numerical. It is the only
global meteorological model operated by DoD. In its 159 spectral wave configuration
with 18 levels, NOGAPS makes operational forecasts to 144 hours twice daily. The
model then runs in a 63 spectral wave configuration to 240 hours. This configuration
uses approximately 80 million words of memory and requires around 12 minutes of wall
time per forecast day, though this requirement depends on the time step being used and
on competition for resources.

NORAPS - The Navy Operational Regional Atmospheric Prediction System (NORAPS)
model is a relocatable regional primitive equation numerical weather prediction model
(Hodur [3]). NORAPS is run at higher horizontal and vertical resolution than NOGAPS
for areas of high DoD interest. It can be initialized either from its own high-resolution
nowcast, or from the coarser resolution NOGAPS nowcast. It uses lateral boundary
conditions provided by NOGAPS, and generally provides a more accurate and detailed
depiction of mesoscale weather features than NOGAPS, particularly in areas affected by
the land surface. NORAPS currently runs in one of three resolutions, 45 km, 20 km, and
a 15 km resolution nest within a 45 km resolution area. Currently, FNMOC runs six
NORAPS areas operationally (2-45/15 km, 2-45 km, 2-20 km). The 45 km resolution
areas use around 40 million words of memory and require 35 minutes to complete a 48
hour forecast.

COAMPS - NORAPS is being replaced with the Coupled Ocean/Atmosphere Mesoscale
Prediction System (COAMPS) model (Hodur [4]). The atmospheric component of
COAMPS features triply-nested grids down to resolutions of a few kilometers, non-
hydrostatic dynamics, explicit moisture physics and aerosols, and improved data
assimilation. The underlying and fully coupled oceanographic component of COAMPS
will eventually combine the functions of OTIS (ocean thermal data assimilation), POM
(ocean thermal and circulation prediction) and WAM (ocean wave prediction) to provide
for fully interactive two-way coupling between ocean and atmosphere (Clancy and Hodur
[5]). With lateral boundary conditions provided by FNMOC global models, COAMPS
provides the high-resolution, relocatable and fully integrated METOC prediction
capability required for seamless support of the sea-air-land operations implied by the
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Navy's new missions. Currently, FNMOC runs two COAMPS areas, Europe and
Southwest Asia. The model for each area is characterized by an 81 km outer grid, and
inner grids of 27 km and 9 km. The Southwest Asia (larger area) uses around 100 million
words of memory and requires approximately 2.5 hours to complete a 48 hour forecast.
FNMOC runs each COAMPS area twice daily.

EFS - The Ensemble Forecast System (EFS) is implemented with a coarse horizontal
resolution version of NOGAPS (Pauley et al. [6]). In this state-of-the-art approach,
multiple forecast runs are made from slightly differing initial conditions, with each
obtained by means of a process that "breeds" the growing error modes that dominate
forecast error (Toth and Kalnay [7]). By averaging the resulting multiple forecast
realizations (and hence tending to cancel out the effect of the growing error modes), a
forecast is achieved with higher skill than any single forecast produced even with a higher
resolution version of the model. In addition, the spread of forecast realizations allows an
estimate to be made of the range of forecast error, which can vary substantially from
week to week depending on the global-scale flow patterns in the atmosphere.

GFDN Tropical Cyclone Model - The Geophysical Fluid Dynamics Laboratory (GFDL)
Tropical Cyclone Model is implemented at Fleet Numerical to provide track and intensity
predictions for hurricanes and typhoons. The model is described by Kurihara et al. [8],
and includes a moving triply-nested grid, second order turbulence closure, convective
adjustment, infrared and solar radiation, and parameterization of land surface
characteristics by vegetation type. The model is initialized from a special analysis
constructed by removing the tropical cyclone component from the NOGAPS analysis and
replacing it with a synthetic vortex generated from the observed location and structure of
the storm. Forecast lateral boundary conditions for the Tropical Cyclone Model forecasts
are provided by NOGAPS.

Oceanographic models

WAM - The Third-Generation Wave Model (WAM) contains state-of-the-art nonlinear
physics for forecasting the evolution of directional wave energy spectra and derived wave
height, period and direction fields (WAMDI Group [9]). WAM is run in both global
coarse-resolution and regional high-resolution implementations at Fleet Numerical. The
regional implementations generally include shallow water physics to account for
refraction and bottom friction effects, although these formulations begin to lose validity
at depths shallower than about 30 meters. WAM uses wind stress forcing provided by
either NOGAPS, NORAPS or COAMPS. WAM provides crucial support for Optimum
Track Ship Routing (OTSR), the issuance of high-seas warnings, and many other
applications. There are currently one global and four regional WAM areas that run on the
¢90, and five areas running on a j90. Global WAM, the largest of the all areas, requires
70 million words of memory and takes about 45 minutes of wall time for a 5 day forecast.

OTIS - The Optimum Thermal Interpolation System (OTIS) is the primary ocean thermal
nowcast model used at Fleet Numerical (Cummings {10]). Both global coarse-resolution
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and regional high-resolution versions are in use. All of the OTIS implementations use the
Optimum Interpolation (OI) technique to assimilate real-time data. Regional OTIS
further employs water-mass-based representation of ocean thermal climatology and ocean
front and eddy "feature models" to produce "synthetic" data to supplement the "real" data.
This allows a detailed and accurate depiction of subsurface thermal structure associated
with fronts and eddies whose surface positions are depicted in operational ocean front and
eddy analyses derived primarily from satellite imagery by analysts at the Naval
Oceanographic Office. OTIS runs globally for surface only analysis, and separately for a
full surface to 5000 meters (3-D) analysis. There are three regional areas running 3-D
analyses: western Pacific, western Atlantic, and Greenland/Norwegian Seas. Separate sea
surface temperature OTIS analyses also run for each NORAPS area. OTIS uses about 42
million words of memory and takes approximately 30 minutes of wall time for its largest
area, a 28 Km global analysis of sea surface temperature.

TOPS - The Thermodynamic Ocean Prediction System (TOPS) is a synoptic ocean
mixed-layer model (Clancy and Pollak [11]). Both global coarse-resolution and regional
high-resolution versions are in use. TOPS is initialized by temperature and salinity fields
nowcast by OTIS, and includes sophisticated turbulence closure physics and radiation
absorption calculations. TOPS produces forecasts of upper-ocean thermal structure and
currents driven by surface wind stresses and heat fluxes predicted by either NOGAPS or
NORAPS. Three regional areas, one for each 3-D OTIS area, and a global TOPS, each
run once per day. TOPS uses approximately 13 million words of memory and requires
about 20 minutes of wall time to complete a 72-hour forecast for the global 110 Km
configuration.

PIPS - The Polar Ice Prediction System (PIPS) is a dynamic and thermodynamic sea-ice
model designed to forecast ice thickness, concentration and drift in the arctic (Cheng and
Prelier [12]). PIPS is driven by surface wind stresses and heat fluxes from NOGAPS, and
is coupled with an underlying dynamic ocean model. PIPS is updated daily from an
objective analysis of ice concentration data from the Special Sensor Microwave/Imager
(SSM/I) instrument aboard the Defense Meteorological Satellite Program (DMSP)
satellites. PIPS uses 41 million words of memory and takes about 45 minutes of wall
time to run.

DART - The Data Assimilation Research Transition (DART) model is a two-layer
primitive equation dynamic ocean model designed to forecast the evolution of the Gulf
Stream (Thompson and Schmitz [13]). It currently produces two-week forecasts of Gulf
Stream north-wall positions.

The following models are currently being implemented and tested for possible
operational use at FNMOC.

POM - The Princeton Ocean Model (POM; Blumberg and Mellor [14]) is a multi-level

primitive equation ocean circulation model, which contains a sophisticated treatment of
vertical mixing. The model includes atmospheric and tidal forcing and is designed
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specifically for high-resolution shallow-water applications in support of the Navy's new
emphasis on coastal operations. Initial testing of POM at Fleet Numerical has been for
the West Coast of the United States (Clancy et al [15]) and for the Yellow Sea
(Riedlinger and Preller [16]). POM has already been used operationally by the Navy in
semi-enclosed seas where lateral open boundary conditions are not an issue (Horton, et
al. [17]). In general, POM is expected to be the Navy's model-of-choice over the next
several years for providing high-resolution coastal predictions of currents, sea level and
thermal structure.

NLOM - The Navy Layered Ocean Model (NLOM) is a global and, at least, marginally
eddy resolving implementation of the Navy Layered Ocean Model of Wallcraft [18],
which is a descendant of the model of Hurlburt and Thompson [19]. NLOM will support
coastal implementations of POM through lateral boundary conditions, and provide an
improved representation of ocean currents on the global scale. Assimilation of satellite
altimeter data into NLOM and POM will be a crucial requirement for their success.

MOM - The GFDL Modular Ocean Model (MOM) (Pacanowski [20]) is a three-
dimensional primitive equation ocean model. . MOM was designed to run on large-scale
vector processors such as FNMOC’s Cray C90. It has been used with NOGAPS in
coupled air/ocean research at the Naval Research Lab in Monterey (Li and Hogan [21]).
FNMOC is currently using version 2 (MOM 2). It contains state-of-the-art physical
parameterizations with an implicit free surface and surface mixing. MOM 2 is being
tested on a global one-half degree latitude and longitude grid, with 20 vertical levels.
With appropriate data assimilation, MOM 2 may provide improvements over global 3-D
OTIS and TOPS. Expected products from MOM 2 would be surface and subsurface total
currents (TOPS provides only wind mixed surface currents), temperature, salinity,
dynamic height and mixed layer depth.

THE CHALLENGE

Within the next three years, FNMOC must complete a transition of all its hardware and
software to a more capable system. Although the hardware vendors for the new system
are not yet identified, the specifications are now being determined for targeted software
requirements. With this planned increased computer power, numerical prediction models
will have fewer constraints on computer memory and run time limitations. For this
transition to take place, existing meteorological and oceanographic models will either
have to migrate to the new scalable computer architecture with appropriate
reprogramming, or be replaced with new software. The ultimate challenge will be to
combine relatively new hardware and software technology into a capable, operational
system by the year 2001.

Table 2a summarizes expected capabilities for the future generation of meteorological
models at FNMOC. Hardware specifications for FNMOC’s scalable architecture will
allow the global weather model to execute over its entire forecast length of ten days,
twice per day and taking five hours of wall clock time per ten day forecast. Specifications
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also call for the capability to run at least five regional area models. Each regional model
will be able to nest smaller, higher resolution models on mesoscale, tactical, and
battlefield domains. Nesting is a means of simultaneously executing the same regional
model for different scaled domains provided they are contained within each other. Table
2a also shows the number of model levels, fields, and storage requirements for the global
model and five nested regional models.

GLOBAL REGIONAL MESOSCALE | TACTICAL BATTLEFIELD
Domain Size Global 9000 X 9000 3000 X 3000 1000 X 1000 333 X333 km
km km km
Grid 50 km (~.5 54 km 18 km 6 km 2 km
Resolution degrees lat/lon.)
Vertical Levels | 50 Sigma 50 Sigma 50 Sigma 50 Sigma 50 Sigma
30 Pressure 30 Pressure 30 Pressure 30 Pressure 30 Pressure
Multi Level 6 6 6 6 6
Parameters
Single Level 30+ 30+ 30+ 30+ 30+
Parameters
Forecast 81 (240 17 (48 hours in | 17 (48 hoursin | 9 (24 hours in | 25 (24 hours in 1
Periods hours in 3 hour | 3 hour 3 hour 3 hour hour increments)
increments) increments) increments) increments)
2-D Press 17010 3570 3570 1890 5250
Level Fields
2-D Sigma 24300 5100 5100 2700 7500
Level Fields
Grid Points per | 259920 27789 27789 27789 27789
2-D Field
Application 3570 3570 1890 5250
Grids
IEEE Storage ~43 Gbytes ~7 Gbytes ~7 Gbytes ~4 Gbyte ~10 Gbytes

Table 2a. Future meteorological model requirements. The Battlefield scale is a required capability, but
may not be invoked in all areas.

One of the strengths of the new model software designs being developed at FNMOC is
the ability to couple the meteorological models with oceanographic models. Coupling
could help account for positive feedback and air-sea interactions (L1 [22,23]). COAMPS
will become FNMOC’s regional coupled air-sea model as ocean submodel components
are added progressively to it. FNMOC will look toward the “Ocean” part of COAMPS to
meet many of the customer requirements for oceanographic products.

NOGAPS will be reconfigured to run on FNMOC’s new scalable architecture and will
continue to provide global atmospheric products. The concept of coupling a global ocean
circulation model with NOGAPS, in some fashion, is also being studied. There are at
least two ocean circulation model candidates that could be selected for this purpose. One
is being developed at the Naval Research Laboratory at Stennis Space Center in
Mississippi. It is the NRL Coastal Ocean Model (NCOM). NCOM is expected to be the
future ocean component for COAMPS, and may also be delivered to run in a global
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configuration. If a global version becomes available, it could run with either one-way
interaction with NOGAPS (forced with NOGAPS winds and heat fluxes), or run in a
more closely coupled mode. The second choice is a descendent of MOM, called the
Parallel Ocean Program (POP; Semtner [24 ]). POP was reprogrammed at the Los
Alamos National Laboratory for use on parallel computers with distributed memory. Due
to the common heritage between MOM and POP, the transition of MOM from the Cray
computers to POP on a parallel architecture makes POP a strong candidate for one or
two-way coupling with NOGAPS.

Future ocean wave models will also need to be reprogrammed to run on the scalable
computer architecture. The migration of WAM is currently being funded in part by the
Common High Performance Computing Software Support Initiative (CHSSI). This is a
component of the Department of Defense High Performance Modemization Program
(West, et al. [25]). Migration of TOPS, OTIS and PIPS is still an issue. Replacement
rather than migration may be the answer for TOPS and OTIS. Here, with appropriate data
assimilation, NCOM could prove to show more skill. The danger, however, of seeking
replacements instead of migrating the existing models is that FNMOC would be forced to
rely on new and unproven technology to replace proven operational products. Table 2b
summarizes the desired capabilities of future oceanographic models.

GLOBAL MESOSCALE TACTICAL BATTLEFIELD
Domain Size Global 3000 X 3000 km 1000 X 1000 km 333 X333 km
Grid Resolution 25 km (~.25 18 km 6 km 2 km
degrees lat/lon.)
Vertical Levels 35 35 35 35
Multi-level 7 7 7 7
Parameters
Single-level 20+ 20+ 20+ 20+
Parameters
Forecast Periods 41 (240 hoursin 6 | 17 (48 hoursin 3 13 (36 hours in 3 25 (4 hours in 1
hour increments) hour increments) hour increments) hour increments)
2D Fields 10865 4505 2385 6625
Grid Points per 2D | 1038240 27889 27889 27889
Field
IEEE Storage ~46 Gbytes ~3 Gbytes ~2Gbytes’ ~4Gbytes

Table 2b. Future oceanographic model requirements. The Tactical and Battlefield scales are required
capabilities, but may not be invoked in all areas.

CONCLUSION

Confronted with an aging computer system that has become nearly saturated with
operational applications, FNMOC is faced with a new challenge over the next three years.
This challenge will be to replace its existing system with an affordable, yet capable, new
system. The transition will target a scalable system. FNMOC will take advantage of new
technology both in hardware improvements and in numerical modeling advancements
available from the scientific community. Since vendor support for the existing system is
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becoming costly with very little end benefit, the new hardware/software configuration
must be in place within three years.
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Abstract

The spectral transform has proved a robust method for the treatment of the non-
linear adiabatic Navier-Stokes equations of fluid flow on a sphere. It is robust and
the intrinsic shortcomings of spectral methods (dispersion and truncation, and the
formation of Gibbs ripples in the presence of steep gradients) are well understood. It
is therefore one of the preferred forms for global atmospheric models. In the spectral
transform method each field has a representation in spectral coefficients of spherical
harmonics, and a corresponding grid field. The linear dynamics is generally treated
in spectral space, while the physics (i.e gridscale parameterization of sub-gridscale

processes and thermodynamics) and the non-linear terms are treated in grid space.

*Senior Applications Analyst, Silicon Graphics/Cray Research.
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A new spectral dynamical core is being developed at GFDL. This model is entirely
coded in f90 and takes a modular, object-oriented approach. Each field is represented by
a grid object and a spectral object with a standard interface. The transform module can
convert one to the other. Separate modules exist for operations that are done entirely
in spectral space and grid space. All the physics modules treat the grid objects, and
since the interface is standard, the physics in this model is entirely modular.

The current paper concerns the parallelization of this spectral dynamical core. The
approach that has been taken remains entirely consistent with the modular object-
oriented approach. A flexible, dynamic data decomposition module has been written
which takes the grid and spectral objects and manages the distribution and communi-
cation of data among independent processors. The decomposition is entirely dynamic
and run-time configurable, and divides grid or spectral space into data and computa-
tional domains. The domains can be global or local at various stages of the transform
depending on our tolerance for the communication overhead. This permits various
strategies to minimize inter-processor communication in the two stages of the spectral
transform. We demonstrate different methods of implementing this within the dynamic
decomposition approach. Finally, we also present performance of the parallel spectral

dynamical core on a Held-Suarez climate benchmark.

1 Introduction

All numerical models for the atmospheric general circulation (GCMs) solve discrete forms
of the non-linear Navier-Stokes equations for fluid flow in a spherical shell, coupled with

equations describing the thermodynamic state of air. The prevalent terminology divides
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these equations into the dynamics and physics, where the former refers to the resolved Navier-
Stokes dynamics, with the parameterization of thermodynamics and unresolved scales being
termed the physics. The division can be somewhat arbitrary, and is obviously a function of
the resolution scale. For climate problems in particular, it is necessary to develop numerical
representations of these equations that not only preserve long-term statistical integrity, but
are also computationally efficient enough for the very long integrations that these studies
require.

The design of the codes in which these simulations are carried out remains in a dialecti-
cal relationship with the evolution of computer architectures and compiler technologies. In
particular, codes are in transition now from an era dominated by vector supercomputers to
one where the Trades blow in the direction of massively parallel processing architectures.
Furthermore, as interest grows in simulation of the effects of climate change at regional and
smaller scales, there is a trend toward increasing resolution, and the phenomena represented
in the physics packages of models remains in constant evolution. In fact, given the wide vari-
ety of atmospheric GCM code designs currently in existence, a benchmark has been proposed
for the intercomparison of their performance and integrity over climate timescales (Held and
Suarez 1994). It is not a conventional benchmark in that what will be compared is the equi-
librium statistical behaviour (the “climate”) of the models rather than their convergence
toward an exact solution.

The twin needs of scalability and modularity have prompted the design of a new genera-
tion of models at GFDL. These models are being designed with a maximum of flexibility in
mind. Not only may these codes have to perform over a range of computing architectures,
they will also be in constant flux, especially in regard to the physics packages with which
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they are used. With this in mind, we have isolated the dynamical core of these models as far
as possible. The dynamical core accepts a single uniform module interface for physics. Thus,
the physics packages remain entirely interchangeable. The dynamical cores themselves also
retain a modular texture, as a wide variety of algorithms may be used for various aspects of
the dynamics depending on the problem being solved and the available computing power on
the platform upon which the calculations are being carried out.

The new generation models include a finite-difference gridpoint model and a spectral
dynamical model. This paper is concerned with the modular design of a scalable dynamical
core for the spectral model.

In Sec. 2 we describe the spectral transform method that is generally used for spectral
dynamical cores. In Sec. 3 we analyze the data dependency patterns of the spectral transform
method and construct an algorithm for the spectral transform method in Fortran 90 that

permits us to evaluate a range of possible parallel implementations.

2 The spectral transform method.

A spectral representation consists in constructing the dynamical fields as expansions in spec-
tral basis functions. The expansions are truncated at some chosen order for numerical pur-
poses. Spherical harmonics are generally chosen as spectral basis functions. The problem
arises with non-linear terms, such as in advection, which, if explicitly expanded, result in
a sum of terms quadratic in the order of the expansion. The transform method (Orszag
1970) consists in returning the fields to grid space for the computation of non-linear terms,

and transforming back for the spectral computations. Since this method involves frequent
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transformations between grid fields and spectral fields, efficient numerical transform methods
have been developed, including parallel methods (Foster et al. 1992).

The expansion of a quantity f(6,¢) in spherical harmonics is as follows:

i i JmnPun (cos 8) em® (1)

m=—0co n=lm|

where (0, ¢) are the spherical co-ordinates, m and n are termed the Fourier wavenumber
and the spherical wavenumber respectively, and P, are the associated Legendre polynomials
of the first kind of order m and degree n. The spherical harmonics Yiyp, = Prne'™® satisfy

the orthogonality relationship:
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1 . ~
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where the @ integral runs from the South to the North Pole.

The spherical harmonic coefficients f,., of the expansion are given by the inverse trans-
form:
1
T 4r

mn

NP
/ (cos §) e™*d (cos §) do (3)
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In the numerical representation, these infinite series are evidently truncated. The Fourier
wavenumber m is first truncated to a maximum of M. In the triangular truncation, the
spherical wavenumber n is truncated at N = M. In the rhomboidal truncation, n is truncated
at |m| + M. In both cases, M is sufficient to specify N. The truncation is thus specified
either as T or R (for triangular or rhomboidal) followed by the value of M, which is sufficient

to specify the spherical truncation as well. Thus T42 refers to a spectral expansion that is
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triangular-truncated at M = 42 and N = 43. Henceforth, the summations in Eq. 1 will be
understood be truncated at some specified value.

The numerical representation of the integrals in Eq. 3 require a discretization in space
of 8 and ¢. The I longitude points ¢; are generally chosen to be evenly distributed between
0 and 27. This facilitates efficient methods for the evaluation of the Fourier integral such as
the FFT. For the evaluation of the Legendre integral, the J latitude points 8; are chosen to
lie at the Gaussian quadrature points. Note that the Gaussian grid is non-uniform in j. The
spectral transform (Orszag 1970) requires / > 3M + 1 and J = /2.

The numerical form of the transformations between grid space and spectral space is thus

as follows:

fij = 0_1’¢t Z men mn COSO) —iméi (4)
m=~M n
J I
= 4—1— 3> f:;€™% P (cos 8;) A (cos8;) Ag (5)

j=11i=1

where the limits of 3~ depend on the method of truncation, and A¢ is the assumed
constant longitude spacing.
The sums are performed in the order shown in Eq. 5 and Eq. 6. The intermediate step

produces the partially transformed quantity fn;, which we term the Fourier representation:

1
fm_y = E fmann (COS 01) = Z:fijeimd" (7)
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3 Parallelism in the spectral transform.

Consider now a model using the spectral transform method, where at each timestep, a field
f will have a certain number of operations performed on its spectral form f,. and others
on its grid form f;;. Starting with the spectral form f,., we first perform a summation in n,
where the summation has to be performed independently over all the possible values of m
and j. This step is thus coupled in n and data-parallel in m and j, and produces fn;. We
then perform a Fourier transform upon fnj, a step that is coupled in m, but data-parallel in
i and j. We may now perform any operations upon f that are required to be performed in
grid space. Similarly in the reverse transform Eq. 6, we first do an inverse Fourier transform
upon f;; that produces a series of independent m coefficients at each j; and finally a reverse
Legendre transform that consists of a sum on the Gaussian quadrature points j to reproduce
the spectral field f,... The data dependencies described here are graphically shown in Fig. 1.

Each of these stages involves 3 of the 4 co-ordinate axes m, n, 7,4, where a global reduction
is performed on one of the axes, and is data-parallel in the other 2. We try to exploit this
symmetry in our developmemt of a parallel implementation.!

Distributed global reductions are generally discouraged in developing parallel algorithms,
since they tend not to scale well with increasing processor counts. While keeping this in mind
in developing our parallel implementation, we will evaluate the performance of distributed
reductions as well. But for the moment consider the first step of the cycle in Fig. 1, frmn —

fmj- In a parallel implementation, each of the fn;s could in principle be calculated on a

1There is the possibility of further parallelism in that there are many such fields f, typically the number
of global model variables x the number of vertical levels per global variable, but in all cases the coupling

among fields is very tight, and inhibits parallelism. We will not be considering this sort of parallelism.
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Figure 1: Data dependencies in the four steps of the spectral transform.
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separate processor. But the processors computing fn.; for any value of j would all require
all the values f,, for all values of n, either by performing a global reduction or by acquiring
a local copy. This is schematically illustrated in Fig. 2.

Since the entire column f,,, in Fig. 2 is required for the computation, this step in the
algorithm will be exactly parallel over a maximum of M columns. When the processor count
P exceeds M, we expect the scalability to begin falling off. If a large number of processors

P > M are available, we may parallelize the computation further:

fmi =22 ( %E: fm.Pmn(j)) (8)

Dy \n=NS

where n = NS--- NE is the range of n available on the processor that is computing fn;.

The sum over the domains D, is then a global reduction across the processors computing
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Figure 2: Data domains in the fn, = fn; computation.
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Similar considerations hold for each step in the process. For the f,,; — fi; we have Fig. 3,
where now the scalability is limited by J, and all the M values f,; at each j are required
for each f;; computation. Similarly, in the reverse order, we have the data dependencies
in Fig. 4 for the computation fi; — fm;, with a scalability limit of J processors, and for
fmj = fmn, we have the data dependencies in Fig. 5, with a scalability limit of V.

We now develop a data distribution scheme based upon these considerations. In its most
general form, the decomposition is 2D. We distinguish three spaces: the spectral space S and
grid space G, holding the representations fm» and f;; respectively; and the Fourier space F,
holding the intermediate form f,;. In each space, data location in memory is specified in

terms of a data domain and a computational domain.? The data domain consists of all the

2This distinction exists in gridpoint models as well, where the data domain may include a halo region

123



Figure 3: Data domains in the f,; — f;; computation.
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points in some space that is available on a processor, and the computation domain is the
set of points which are actually computed. The computational domain in a space is denoted
by its name, for the data domain we add a superscript D, Each domain is considered to be
global along an axis if it contains all the possible values along that axis, or local otherwise.
An axis along which a domain is global is given as a subscript. Thus, if the d** domain in
spectral space is global in M, we denote this as S7. The data domain is at least as large

as the computational domain:

H; C H? 9)

where H € {S, F, G}. If the data domain exceeds the computation domain, Hs C H, D, the

around the computational domain.
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Figure 4: Data domains in the f;; — f,; computation.
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data outside the computational zone must be fetched from the processor on which they are
computed. Every data point is computed on at least one processor, but may be redundantly

computed on more than one.

UH:=H (10)
d

The subscript 4 runs over the number of domains into which the space has been divided.
If the number of domains exceeds the processor count P, a processor will compute more than
one domain. If it is less, some processors will be idle or redundant.

By examining Fig. 2 we see that defining data domains S7y is sufficient for the compu-
tation fmn, — fm; to be local, irrespective of the other data distributions. Whether we use

a local spectral computational domain Sy or a global one Sin depends on whether there is
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Figure 5: Data domains in the fn; = fmn computation.
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enough computation in S to outweigh the cost of gathering data across processors to con-
struct Sf;’ ~- If there is not, we would rather perform the computations in S redundantly on
each processor. As mentioned earlier, this step will scale perfectly only up to M processors.

Similarly, consulting Fig. 3 - Fig. 5, we may see that the use of domains F£M, Gg ; and
F, d[;’ ), for the subsequent steps in the computation loop in Fig. 1 ensures that all global reduc-
tions are performed locally. Note especially that the Fourier space is partitioned differently
in the forward and backward Legendre transforms. Whether global computational domains
Fim, Gar and Fy; are used depends on the computation to communication ratio at each
step. Since the only computations on the Fourier domain are for the transform itself, it is
likely that we may use global domains here, especially on loosely-coupled systems. Compu-

tation in G is likely to be intensive enough to warrant using local domains Gg. This will
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then entail a data gathering step after the gridspace computations are completed, prior to
commencing the inverse Fourier transform.

This analysis has been implicitly done with reference to a message-passing environment.
It is to be noted, however, that even on a shared-address NUMA machine, this method of
partitioning data has much to recommend it. All domains will be local, and the partitioning
of data in memory will then naturally be according to the computation on the processor
(Culler and Singh 1998). Thus, a global array £(1:IMAX,1:JMAX) will instead be dimen-
sioned £(IS:IE,JS:JE,NDOMAINS), where (IS:1E,JS:JE) are the local domain bounds, and

NDOMAINS is the number of domains on the partition.

4 Discussion.

Tests are currently underway to determine the scaling behaviour of this method on both
MPP (t3e) and DSM (Origin) platforms. We will report the scalability of the algorithm
for various domain configurations and processor counts, and for a range of computational

densities in spectral and grid space.
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ABSTRACT

With the March 1998 release of the Penn State University/NCAR Mesoscale Model (MMS35), the
official version of the model (MM5v2 Release 8) now runs on distributed memory (DM)
message-passing platforms. Under an IBM-funded effort, source translation and runtime library
support minimize the impact of paralielization on the original model source code with the result
that the majority of code is line-for-line identical with the original version. Parallel
performance and scaling are equivalent to earlier, hand-parallelized versions; the modifications
have no effect when the code is compiled and run without the DM option. Supported computers
include the IBM SP2, Cray T3E, and Fujitsu VPP. The approach is compatible with shared-
memory parallelism, allowing DM/SM hybrid parallelization on distributed memory clusters of
SMP. Preliminary results show that scalability on distributed shared memory computers such as
the SGI Origin 2000 also benefits from a distributed memory programming model.

1. INTRODUCTION

The Pennsylvania State/National Center for Atmospheric Research Mesoscale Model is a
limited-area model of atmospheric systems, now in its fifth generation, MM5 (Grell et al,
1994). It was designed for vector and shared-memory parallel architectures. Two earlier
distributed-memory parallel versions of the model code were developed at Argonne National
Laboratory -- the Massively Parallel Mesoscale Model (MPMM) and a subsequent Fortran90
implementation, MM90. These were efficient, scalable, more modular and dynamically
configurable (Foster and Michalakes, 1993; Michalakes, 1997b) than the source model.
Nevertheless, extensive modification for parallelization prevented integration with the official
version of MMS5. The challenge was to produce a distributed memory parallel version of the
model sufficiently close to the original source code that it could be officially adopted,
supported, and maintained. This was accomplished March, 1998, with the release of MM5

! This work was supported in part by the Mathematical, Informational, and Computational Sciences Division subprogram of the
office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.
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Version 2 Release 8, the first official version of the model to support distributed memory
parallelism.

The “same-source” approach to parallelization places an emphasis on preserving the original
source code, a critical factor in NCAR’s willingness to accept the changes to the official
model. The approach employs an application-specific parallel library and a compile-time
source translator to automate and hide parallel mechanisms in the code. The Runtime System
Library, RSL (Michalakes, 1997c), provides domain decomposition, local address space
computation, distributed I/O, and interprocessor communication supporting parallelization of
both the solver and mesh refinement code. The Fortran Loop and Index Converter (FLIC
(Michalakes, 1997a)), translates at compile-time to generate a parallelized code (that only the
compiler sees) from a single version of the source model. The approach is essentially
directiveless, requiring only a small amount of information—sufficiently general and concise
to fit on the tool’s command line—to direct the translation.

The DM-parallel option to MMS5 was released as part of the official model in March, 1998, as
MMS5 Version 2 Release 8. The code is running operationally in real-time forecast mode on
an IBM SP at the United States Air Force Weather Agency facility, Offutt Air Force Base,
Nebraska. The model is also in use by the U.S. EPA, the California Air Resources Board, and
a number of other research, university, and government users in the United States, Europe,
and Asia. This paper summarizes issues that arise in parallelization of a weather model and
describes the tools-based approach used to parallelizing MMS5. Results are evaluated in terms
of impact on model source code as well as model performance and scaling.

2. SAME-SOURCE

Architecture-specific coding affects understandability, maintainability, extensibility,
reusability, and portability to other, dissimilar architectures. Such coding may manifest itself
in how arrays are dimensioned, aligned, and allocated in memory; how loops are nested or
otherwise structured (blocked, unrolled, fused); at what level loops are positioned in the
subroutine call hierarchy; how iteration is expressed (loops or array syntax); how information
is exchanged between subroutines; and, with distributed memory, how communication is
implemented. Maintaining separate codes is difficult and time consuming; and because
changes and enhancements must be made by hand and tested over all versions, some versions
inevitably fall behind. The ability to exploit a range of computer architectures with a single
source code provides obvious benefits. If, in addition to a “single-source” the user also
wishes to parallelize the code while preserving the pre-existing non-parallel source, the
additional constraint of “same-source” is imposed.

Distributed memory programming provides the most general programming model for both
portability and scalability, since distributed memory programs adapt trivially to shared
memory (while the reverse is not true). Portability through distributed memory programming
will best position programs to exploit successive advances in high-performance computer
architecture, the latest of which is low-cost high-speed networked configurations of personal
computers (Cipra, 1997), a computational option unavailable to shared-memory programs.
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Programming for distributed memory provides both portability and scalability. Another
emerging architecture is distributed memory configurations of SMP nodes; distributed
memory programming is an essential (and non-mutually exclusive) component of an overall
strategy to exploit these machines. Finally, on distributed/shared memory architectures —
distributed memory machines with additional hardware and software for to support shared-
memory programming (e.g. the SGI Origin 2000) -- distributed memory programming may
still provides better scaling because locality is explicitely enforced.

Much of the painful low-level detail originally associated with message-passing
programming—domain-decomposition, message passing, distributed O, and load
balancing—has been efficiently encapsulated in application-specific libraries (Hempel and
Ritzdorf, 1991; Kohn and Baden, 1996; Michalakes, 1997c; Parashar and Browne, 1995;
Rodriguez et al, 1995). These approaches still require modification to the code for iteration
over local data, global and local index translation, and distributed I/O. If one is able to design
a new model or undertake a major redesign, these issues may be addressed directly in the
code, as a number of groups have demonstrated (e.g., ECMWF’s IFS and Environnement
Canada’s MC2 models). However, if a same-source and not only single-source
implementation is required, additional help is needed.

Source translation removes the remaining difficulties associated with implementing the
model efficiently for distributed memory. Further, source translation is applicable to a
broader range of performance portability concerns. Loop restructuring, data-in-memory
restructuring and realignment, and other manipulations are all effective code transformations
for addressing single-processor cache performance, data locality, and communication cost.
Source translation and analysis tools also uncover data dependencies in paralle]l routines
(Friedman et al, 1995; Kothari, 1996). Finally, source translators may be used for
nonperformance-related code transformations, such as adjoint generation for sensitivities and
four-dimensional variational assimilation (Goldman and Cats, 1996). Source translation is a
key enabling technology for the single-source development of fully integrated, fully portable
models.

3. APPROACH

Parallelizing a weather model for distributed memory parallel computers involves dividing
the horizontal dimensions of the domain and assigning the resulting tiles to processors. The
code is then restructured to compute only the cells stored locally on each processor (by
modifying DO loops and index expressions) and communication is added to exchange data
between processors. In an explicit model such as MMS, the communication between
processors is essentially nearest neighbor and is used to update extra memory regions around
the local partition. Communication is also required to support mesh-refinement in models
that support nesting.

Adapting the model to compute over multiple address spaces requires modifying the code to

execute only over the local partition on each processor. This involves modification of loops
and indices. There are two approaches: either establish that an index expression always
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represents a global index (Global View), or establish that the index expression always
represents the index of a cell in local memory (Local View). In either case, the actual
indexing of the model arrays within the bodies of parallel loops is unaffected; what differs is
the expression of the loop ranges themselves, the declaration and storage classes of the
decomposed arrays, and the subroutine interfaces. The global view has advantages for new
codes while the local view has advantages for a same-source parallelization of a legacy code.

In the global view, ranges of parallel loops in a subroutine are modified to begin and end at
the global indices of the first and last cells on the processor. Fortran subrange expressions are
used to declare locally sized model arrays whose elements are, nevertheless, globally
indexable. The global view allows all index expressions within the subroutine — array indices,
tests for boundary conditions, and instances where the value of an index feeds into the
computation — to remain as-is. However, since each processor’s arrays must be declared
using a different subrange (that is, each processor’s set of cells starts and ends at different
global indices), the mapping of arrays to storage must be dynamic: model arrays must be
passed through argument lists or dynamic memory allocation features such as those found in
Fortran-90 must be used. Furthermore, local decomposed arrays in the subroutine must also
be dynamically allocated using subranges, either explicitly or as stack variables, which is
supported in Fortran-90 but not in Fortran-77.

In the local view, as in the global view, loop ranges over decomposed dimensions must be
modified, but here they begin and end at local indices of the first and last cell stored on the
processor regardless of their position within the global domain. This allows array dimensions
to be uniform over processors and avoids the need to overhaul existing data structures. It
becomes necessary, however, to translate between local and global meaning of under certain
circumstances: loop-invariant index expressions — a constant appears as an index into a
decomposed array dimension, for example -- must be converted from global to local. Index
expressions that appear in tests for position in the domain -~ boundary tests, for example —
must be converted from local to global. Index expressions whose values feed into the model
computation in some way -- computing distances between two points based on their grid
indices, for example —~ most be converted from local to global.

In both the global and local view, modification of looping structures and data declarations are
required to adapt the code to distributed memory execution. The global view avoids the need
to convert between global and local indexing but requires greater flexibility in declaring and
allocating model storage and it requires that data be passed between subroutines through
argument lists. The global view should be considered for new codes or codes undergoing
major redesign. The local view, on the other hand, requires that indices be treated carefully
depending on whether they mean a global or local index, but the local view more easily
coexists with static data structures and systematic use of COMMON in existing codes.
Because of this, the local view was adopted for the MMS parallelization.

4. PARALLEL LIBRARY: RSL
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Figure 1 Impact on source

RSL is a parallel runtime system library for implementing regular-grid models with nesting
on distributed memory parallel computers. It is used to encapsulate many of the lower-level
parallel mechanisms that, otherwise, would require extensive addition and modification to the
model source code:

Domain specification, decomposition over processors, and remapping
Intra-domain communication (stencil exchanges)

Inter-domain communication (nest forcing and feedback)

Local computation on each processor subdomain

Distributed I/O

RSL and its use in parallelizing MMS has been described previosly (Michalakes, 1997b,c).
Although the library eliminates a large amount of explicit paralle] mechanism in the code, its
use still requires that the code be modified to compute over local processor subdomains
(using either local or global views described above). Therefore, additional encapsulation and
automation 1s required for a fully same-source approach.

5. SOURCE TRANSLATOR: FLIC

Even with parallel libraries, modifications for local address space computation must be made
for distributed memory. Hitherto, modifications had been made manually and appeared
explicitly as changes to the source code. The same-source approach transfers the
responsibility for making these changes to an automatic tool, the source translator, and in the
process removes these changes from view of code developers, maintainers, and users.
Translations for distributed memory, cache performance, and computational restructuring
include:’
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Identification and translation of loops over decomposed dimensions,

Automatic conversion of loop-invariant expressions indexing decomposed dimensions of
mode] arrays (global to local),

Automatic conversion of loop-variable expressions used to test position in the global
domain, e.g. for boundary conditions (local to global),

Automatic conversion of loop-variable expressions whose values are used within a
computation, e.g. computing distance between two points in the logical domain based on
their indices (local to global),

Automatic insertion of global and local array dimensions into argument lists of
subroutines and associated call statements (especially with global view),

Automatic disambiguation of expressions used to dimension arrays (local) from loop
range expressions,

Automatic interprocedural data dependency analysis,

Automatic array index reordering,

Automatic loop restructuring, and

Automatic index algebra to move non-local references to the righthand sides of
assignement statements.

We exploit a useful dichotomy in applying source translation to the parallelization task to
provide an incremental development path. This is as follows: communication is hard to
design but is easy to implement with almost no impact on the source code. Computational
restructuring, on the other hand, is straightforward and mechanical, but requires extensive
error-prone modification to the source code. Therefore, for parallelizing a code with a
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minimum of effort and source code impact, there is an advantage to automating
computational restructuring tasks, even if it is necessary to defer automatic dependency
analysis for a subsequent phase because some tools are still under development.

The Fortran Loop and Index Converter (FLIC) (Michalakes, 1997a) is a Fortran compiler
with a special purpose back-end for generating the modified code. Because it employs full
lexical, syntactic, and semantic analysis of the input Fortran, it is able to transform the code
with minimal direction. FLIC examines array references within loops and infers which loops
are over decomposed dimensions, it uncovers instances where decomposed dimensions are
indexed by loop-invariant expressions and generates global to local index translations, and it
uncovers instances where expressions of parallel loop variables are used in conditional
expressions and generates local to global index translations.

6. RESULTS

The impact on software is extremely small, especially from the point of view of the
nonparalle]l user. Of the 32,000 lines in the model that have been addressed so far, the UNIX
diff utility reports 504 lines are different (left half of Figure 1). This view of the code is
significant because changes are out of the way of non-parallel users and code developers.
One need not even install the DM parallel components, in which case the model is effectively
the MMS code as it exists today.

The right half of Figure 1 shows the parallel user and developer’s point of view: the actual
number of changes for distributed memory. Physics is virtually unaffected: only 96 of the
total 13,495 lines in the parallelized subset are different. Dynamics, which includes
communication, is affected slightly more: 287 lines of a total 2,541. Infrastructure, which
includes /O and initialization, effects only 3,300 of a total 16,700. This is due largely to
changes relating to distributed I/O, something FLIC does not address. Similarly, the FDDA
nudging code is affected because it also includes I/O and several large data reduction
operations that FLIC does not, at present, handle.

Figure 2 and Figure 3 show recent preliminary performance results using the MMS5 Version 2
Release 8 mode. The results were gathered using the IBM SP at Argonne and the Silicon
Graphics Origin 2000 at the University of Illinois (NCSA). Timings on the Origin were
performed in dedicated user mode (exclusive access); exclusive access to the processors on
the SP was provided by the gang-scheduler. Performance data for other supported platforms —
the Cray T3E and Fujitsu VPP300 — were unavailable at the time this paper was prepared.
Hurricane Opal data was used to initialize the runs. The box in Figure 2 shows grid sizes,
resolutions, and cost in floating point operations (times 10°) per coarse domain time step for
non-nested, singly nested, and doubly nested cases.

Runs using a single domain (non-nested) were conducted to assess performance and scaling
of the code in distributed-memory parallel mode on from 1 through 64 processors of the IBM
SP (130 Mhz Power2 Superscalar thin nodes with TB3 switch interconnection) and from 1
through 60 processors of the NCSA Origin 2000. The model runs at a rate of 63 Mflop/sec
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on one SP processor versus 118 Mflop/sec on one processor of the origin. On 64 SP
processors, the model ran at 3063 Mflop/sec; on the Origin, 4515 Mflop/sec. Parallel
efficiency (speedup/P) from 1 to 60 processors on the Origin was 63 percent. IBM SP scaling
is super-linear from 1 to 4 processors because of memory effects; therefore a parallel
efficiency of 61 percent was calculated from 4 to 64 processors (speedup/P/4). This translates
to 14 hours for a 36 hour forecast on one SP processor; 7.7 hours on one processor of the
Origin. Running in parallel, the estimated forecast times (exclusive of I/O) are 30 minutes on
64 SP processors and 12 minutes on 60 Origin processors. Singly and doubly nested timings
on the SP are shown in Figure 2; performance is actually slightly better because the nested
grids are much larger than the coarse domain and therefore run more efficiently.

Figure 3 shows a comparison between shared-memory and distributed memory MMS5 runs on
the SGI Origin. The distributed memory code is 63 percent efficient from 1 to 60 processors,
whereas the shared memory version is only 46 percent efficiency from 1 to 32 processors.
Pure distributed memory programs appear able to exploit the low-latency high-bandwidth
interconnect to provide scalable performance.

7. CONCLUSION

We have described an effort that will expand the set of architectures that will run the official
NCAR version of the MMS5, providing the benefit of scalable performance and memory
capacity for large problem sizes to users with access to distributed memory parallel
computers. The same-source approach uses source-translation technology for adapting MM,

136



simplifying maintenance and allowing new physics modules to be incorporated without
modification. The fact that MMS5 is a fully explicit model is a convenient simplification that
may not be available in other models, many of which employ implicit methods in their
horizontal dynamics (Baillie et al, 1997). Future work involves adapting and expanding this
approach to incorporate other computational techniques, including spectral, semi-implicit,
and other methods with non-local data dependencies. Another focus will be on augmenting
source code analysis and translation to address cache and other performance portability
issues. Same-source tools and techniques provide a reasonable approach to obtaining good
performance over the range of high-performance computing options from a single version of
the model source code.
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A 3D nonhydrostatic, time-dependent Eulerian/semi-Lagrangian Navier-Stokes solver
has been employed to simulate gravity wave induced turbulence at mesopause altitudes.
The solver is suitable for modeling a wide range of natural atmospheric flows (broadly
documented in the literature). In the present study, the semi-Lagrangian option of
the message-passing implementation of the solver was used. This work extends our
earlier 2D study reported in the literature to three spatial dimensions while maintaining
fine resolution required to capture essential physics of the wave breaking. Present
calculations, which would be difficult on standard vector supercomputers, have been
performed on the 512 processor Cray T3E machine at the National Energy Research
Scientific Computing Center (NERSC) in Berkeley. The physical results of this study
are spectacular and clearly demonstrate advantages of highly parallel technologies.
In this paper, we briefly outline the physical outcome of the study, while focusing
on selected computational aspects of the project. In particular, we compare the
relative model performance across several machines (Crays T3E and T3D, Hewlett-
Packard Exemplar SPP2000 and Cray PVP systems) using both MPI and Shmem
communication software (where applicable).

1. Introduction

In recent years, a number of new machines based on massively parallel processing
(MPP) technology have become available for large-scale computations in science and
engineering. Among the existing MPP computers, those consisting of hundreds or
thousands of processors communicating via explicit message passing implementations
of application programs appear particularly competitive with conventional vector
supercomputers. On the other hand, there are a number of important yet sufficiently
small problems that can be addressed successfully using vector supercomputers, single
processor scalar workstations, or even modern PCs.

1 Corresponding author address: Piotr K. Smolarkiewicz, NCAR, PO Box 3000,
Boulder, CO 80307-3000. E-mail: smolar@ncar.ucar.edu
2 The National Center for Atmospheric Research is sponsored by the National Science

Foundation
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In order to best utilize the wide range of computing resources now available for science
and engineering, application codes require a high degree of portability between different
systems. To appreciate the significance of portability, consider that in the area of
computational fluid dynamics, numerical research models usually solve systems of
nonlinear partial differential equations on discrete meshes consisting of millions of
points over @(10%) —O(10%) time steps (iterations). The associated computer programs
consist of @(10%) — O(10°) lines of code, and often evolve on a daily basis. Clearly,
this makes supporting several versions of the same model cumbersome, expensive, and
overall impractical. In this paper we emphasize the portability issue and report on
our MPP model performance across several machines representative of the modern
computing environment.

The MPP Fortran code adopted for the purpose of this study has been already
described in the literature [1, 2]. The underlying solver is an incompressible-type
fluid model cast in a curvilinear rotating framework, with a subgrid-scale turbulence
parameterization and water substance phase-change processes included. The distinctive
aspect of our model [1, 2, 16] is its numerical design which incorporates a two-
time-level; either semi-Lagrangian [13] or Eulerian [14], nonoscillatory forward-in-time
(NFT) algorithm. The finite-difference approximations to the resulting trajectory-
wise or point-wise integrals of the governing fluid equations are at least second-order-
accurate. The Eulerian algorithm requires the traditional CFL stability condition,
limiting thereby local communications to nearest neighboring points on the mesh; the
semi-Lagrangian algorithm admits Courant numbers well exceeding unity and results
in irregular communications patterns extending over a number of grid points. In order
to take full advantage of MPP systems, the solver has been implemented using a
single program multiple data (SPMD) message passing approach. In [1], the authors
evaluated the performance of the prototype dynamic core of the model (ideal Boussinesq
fluid) for the two optional formulations of the model algorithm and two distinct
parallelization approaches (High Performance Fortran, HPF, vs. message passing).
In [2], the earlier study was extended to a more complete model (i.e., one including
planetary rotation, phase change processes, and subgrid-scale turbulence schemes)
suitable for simulating natural atmospheric flows. There, the authors quantified the
overall performance of the complete model, as well as the relative performance of
its distinct components (transport, elliptic pressure solver, phase-change modeling,
subgrid-scale parameterization, etc.), on a distributed memory Cray T3D.

In this paper, we demonstrate a satisfactory performance of the model on a large
scientific application, using one of the most complicated options of the model algorithm.
As the application addressed is much too large to be executed straightforwardly on
other machines available to us, the accompanying studies of the model performance
exploit either an abbreviated version of this same experiment, or a less extreme physical
scenario of large eddy simulation (LES) of convective planetary boundary layer using
the default Eulerian variant of the model algorithm (cf. [18]).
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2. Model Description

The numerical model used in this study has been described in [1, 2, 6, 10, 16, 18]. It is
representative of a class of nonhydrostatic atmospheric models that solve the anelastic
equations of motion in the standard, nonorthogonal terrain-following coordinates.
Below we comment briefly on the essential aspects of the model design while referring
the reader to the earlier works for further details.

The conservation laws for the dependent variables of the model may be all written in
the compact form
op*y

ot

Here v denotes any of the three Cartesian velocity components (u, v, w), the potential
temperature, water substance mixing ratios (vapor, cloud water, rain, etc.), as well as
turbulent kinetic energy; p* = PG is the reference (Boussinesq type) density profile
premultiplied by the Jacobian of the coordinate transformation (from the Cartesian to
the terrain following, time-dependent, curvilinear framework). The advective velocity
v* = p*V = p*(u, v, w), with w denoting the “vertical” component of transformed
(contravariant) velocity, satisfies the anelastic mass conservation law

+V- (V) =p F(T). (1)

ap*

v =0. 2
at+Vv 0 (2)

Note that the time derivative must be retained in (2) because of the time variation
in the coordinate transformation [10]. The associated F(¥) terms on the rhs of (1)
are, in general, functionals of the vector ¥ of all dependent variables 1, and they
represent the sum of the resolved and subgrid-scale parts of the total forcings. In
the momentum equations, the resolved terms include pressure gradient forces, Coriolis
accelerations, buoyancy force, as well as wave absorbing devices in the vicinity of open
boundaries. In the thermodynamic equations, the resolved terms include heat and
moisture sink/sources due to the phase changes of water, and the wave absorbers
near the boundaries. The subgrid-scale (SGS) forcing terms are fairly complex but
standard. We employ a turbulence model based on the prognostic turbulent kinetic
energy equation [11] or, optionally, its abbreviated version—the celebrated Smagorinsky
model.

The integration of the discrete equations over a time-step uses a regular unstaggered
mesh. We write the finite-difference approximations to (1) in the compact form

Y+ = LE(9) + 0.5AtF (3)
Here, LE denotes either the advective semi-Lagrangian or flux-form Eulerian NFT

transport operator; ¥ = 9™ + 0.5AtF™; and indices i and n have the usual meaning of
the spatial and temporal location on a (logically) rectangular Cartesian mesh.
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Completion of the model time step requires the F**! values of forcings in (3). Gravity
wave absorbers, Coriolis accelerations, condensation, and pressure gradient forces are
treated implicitly; whereas subgrid-scale terms, and slow phase-change tendencies (such
as rain formation or evaporation [6]) are treated explicitly (i.e., F"*! is predicted from
earlier values of dependent variables). The implicitness of the pressure gradient forces

is essential as it enables projecting the preliminary values LE(¢) onto solutions of the
continuity equation (2), [4]. Here, it requires a straightforward algebraic inversion of the
linear system composed of equations (3), and the formulation of the boundary value
problem for pressure implied by the continuity constraint (2). The resulting elliptic
equation is solved (subject to appropriate boundary conditions) using the generalized
conjugate-residual approach—a preconditioned nonsymmetric Krylov solver (see [15-
17] for further details). The numerical stability of computations is controlled by proper
limiting of Courant and Lipschitz numbers C =|| AtV/AX || and L =|| At(0V/0x) |,
respectively, for the Eulerian and semi-Lagrangian variants of the model.

3. Parallelization versus portability strategy

In 1), we have evaluated the relative merits of message passing and HPF strategies
of parallelization. Overall, we have concluded that the message passing code runs 2.5
and 1.8 times faster (on Cray T3D) than the HPF code, respectively, for the Eulerian
and semi-Lagrangian versions of the model. Consequently, we settled on a message
passing approach. We used a two dimensional horizontal decomposition of the grid;
and explicitly dimensioned each array to contain a subgrid of the total array plus extra
space for a copy of the neighboring processors’ boundary cells. This is a common
technique (cf. [7]) where the extra boundary points are often referred to as “halo cells”
or “halos”. They are used to minimize communications needed when finite difference
operations are performed. The number of halo cells depends on the local stencils
used in the model algorithm and on the maximum Courant number. In simulations
reported here, C < 3. When necessary, the halo cell information is updated by having
each processor exchange information with its neighbors. This communication process
is further economized by admitting only a partial update of halos with their selected
portions being exchanged between the processors as implied by the finite-difference
algorithms employed. Reduction operations such as sums and extrema, unavoidable in
fluid models, require exchanging informations globally between all processors.

To exchange messages between processors, in general, we use the most portable and
widely supported MPI (message-passing-interface) standard. However, on Cray’s T3D
and T3E machines we optionally employ Shmem (shared-distributed memory data-
passing support) library routines.

In order to facilitate portability of the code, we use these same halo-update subprograms
on the distributed or shared-memory parallel architectures, as well as on a single
processor machines. On single-processor and shared-memory platforms, all updates

142



are elementary. They employ one processor for the total domain dimension with halo
used to set appropriate conditions at the domain boundaries. In this case, there is no
need for an explicit message-passing protocol, and only selected parts of total arrays
are rewritten to halo cells on this same processor.

In regards to the portability issue, input/output (I/O) operations raise some serious
concerns. In general, outputed fields should be independent of the machine size
and number of parallel processors used in simulations. Files written by programs
running on N processors should be readable to applications running on M processors.
This is convenient for debugging and is especially important for postprocessing (e.g.,
diagnostics, visualizations, etc.) of large computing projects. Furthermore, the output
files must be also readable on different platforms with different binary file formats
(Cray floating-point, Cray 64-bit IEEE, standard 32-bit IEEE, etc.). In our code, one
processor performs all I/O communication operations by collecting and distributing
arrays between other processors. Relative efficiencies of these I/O operations depend
on the particular computer at hand and are important to the overall model performance.
Keeping the total grid array on one processor does have the disadvantage of limiting
the size of the application. But this is more than compensated by simplicity in coding,
and seems to offer an optimal performance.

4. Physical problem

Our test problem for the Cray T3E was to simulate the evolution of an internal
gravity wave packet generated by a narrow, 2D squall line at tropopause levels and it’s
subsequent breaking near the mesopause. The squall line disturbance was Gaussian in
its spatial-temporal evolution, with a maximum forcing amplitude of 200 m at ¢ = 2 h.
The basic state was one of uniform zonal wind (u, = —32 ms™!), stability (with
Brunt-Viisilli frequency N = 0.02 s™1), and density scale height (H = 6.63 km).
Through a dispersive mechanism this basic state and forcing favor the development of
a monochromatic, 2D primary (convective) instability with near unit aspect ratio. For
a comprehensive description of the basic state, run set up, and results and analysis of
the ensuing convective instability, see [10]. The problem is of interest for at least two
reasons. First, the middle atmosphere is known to be far from radiative equilibrium
at mesopause altitudes and wave forcing is the main factor behind this phenomenon
[5]. Determination of the extent to which gravity wave breaking in particular is
responsible has great relevance to a complete understanding of the process and it’s
parameterizations. Second, numerical simulation of turbulence is of considerable
theoretical interest. The wavebreaking in this study generated a highly inhomogeneous,
anisotropic turbulence. This turbulence developed completely from a very smooth
linear wavefield in accord with the physics of a wave packet propagating into a very
deep model atmosphere—it was not initialized according to any a priori turbulence
model nor constrained by domain size (which can limit wave-wave interactions [12]).
Some idea of the inhomogeneity of the wavefield can be gleaned from Fig. la which
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shows a contour density plot of the potential temperature (6) field. The vertical plane
of this plot is perpendicular to the zonal flow. It shows the wavefield to be homogeneous
in the spanwise direction (left to right) but inhomogeneous in the vertical (note that
the complete altitude range is 15 < z < 125 km; the regions above and below that
shown in Fig. 1a are very smooth and characterized by constant stratification). Similar
inhomogeneity occurs in the zonal direction [10].

The computational grid consisted of 544 x 80 x 291 points with a resolution of 380 m.
To save computer resources, the problem was executed in 2D on a 544 x 1 x 291 grid
until 120 minutes of the physical time. At 120 minutes, the 3D domain was created
by repeating the solution in the spanwise direction y, and seeding the buoyancy field
with a small amplitude (1 % of the basic state) white noise. Further computations
continued in five minute portions of physical time. The lateral zonal and spanwise
boundaries were periodic with lateral zonal sponges. A specially tuned vertical sponge
was also employed, such that it approximated the effects of atmospheric viscosity. No
explicit sub-grid scale viscosity was employed in this simulation. Instead, the removal
of energy at the grid scale was effected with the monotonicity option in the interpolator.
This option invokes a topological constraint whereby no two streamtubes are allowed
to intersect. Essentially energy is removed at the grid scale to the extent needed to
avoid local negative entropy production. This corresponds well with the Kolmogorov
microscale which is the same order of magnitude as the grid size at the initial altitude
of breaking. The time chosen for 3D seeding was carefully selected based upon data
generated with earlier 2D [10] and 3D {9] experiments. The run was terminated at 180
minutes because at this point breaking had consumed the zonal extent of the domain.

The evolution of the turbulence was assessed by examining 1D energy spectra computed
from 6 (approximate equipartition occurs even during wave breaking [9]). In order to
place the averaging regions in the turbulence, the zonal and spanwise spectra were
computed from the average of local field data centered at 100 km altitude, while
vertical spectra fields were centered at a zonal location of -35 km. Furthermore, the
spanwise averages were restricted to the zonal range —60 < r < —30 km. All raw
spectra were Hamming-Tukey smoothed, which acts to minimize the aliasing effects of
the finite domain size, [3]. The inhomogeneity of the wavefield caused severe aliasing
problems in the zonal (and vertical) spectra at intermediate to high wavenumbers. In
particular, the localization of high wavenumber features to a ~ 50 km zonal (~ 30 km
vertical) sub-domain caused (i) severe Gibb’s oscillations, and (ii) excess power at the
highest wavenumbers. These spectra were further processed by (i) integrating them
over a wavenumber variable bandwidth from k¥ = 1 km™? to the Nyquist wavenumber
of 8.27 km~!, and(ii) employing a differential correction algorithm. This algorithm
corrected the full-domain spectra at the highest wavenumbers so that they would show
the same power law tendencies as an unaliased, sub-domain spectra computed from
fields that lay completely within the turbulence. The zonal spectra shown in Fig. 1b
depict both the highest and lowest wavenumber features with fidelity.
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Figure 1b shows the evolution of the zonal energy spectra. At 125 minutes energy
is concentrated at k¥ = 0.40 km~?! (In(k) = —0.9), corresponding to A; = 15.5 km.
This fundamental is due to linear growth of the gravity wave packet as it ascends. At
k = 0.80 km~! (In(k) = —0.23) a much weaker second harmonic of the fundamental can
also be seen. This second harmonic is due to nonlinear effects, and is a harbinger of the
primary convective instability which is about to occur. For the given basic state, linear
waves have an evanescent limit at ¥ = 0.62 km™!, this corresponds to the very sharp
drop off between the fundamental and second harmonic. At later times linear dispersion
causes the fundamental to broaden and peak at lower wavenumbers (longer waves are
slower and take more time to propagate upwards [10]). With the onset of vigorous
wave overturning, a buoyancy subrange [19] with a slope of -3 appears just upscale
of the fundamental (obvious by 140 minutes). At the highest wavenumbers there is
negligible energy until the primary instability occurs. With the onset of a secondary
(3D) instability, a tendency towards a -5/3 slope can be seen. The critical buoyancy
wavenumber that separates the two regimes decreases from ky = 4.0 to 1.8 km~! as
¢ increases from 140 to 180 minutes, respectively. This compares favorably with the
earlier J90 results which yielded k, = 2.1 km™?! at 150 minutes [9]. The experimental
value of k; may also be compared with the scaling result, ky ~ N 3/e, ~ 1.6 km™? [19],
where ¢, is the turbulence dissipation rate. Finally Fig. 1b clearly shows another -5 /3
power law regime at the lowest wavenumbers at earlier times (125 to 145 minutes). This
is consistent with a 2D reversed energy cascade that is transferring energy into the zonal
mean fields [8]. The Eliassen Palm flux divergence has its maximum value precisely in
this time interval, of order 0.02 ms™!, at breaking altitudes. After 150 minutes, the
energy spectra flatten out at the lowest wavenumbers. At this point wave breaking
has disrupted the linear wave field sufficiently that it lacks the large scale coherence
needed to effectively modify the zonal average state. Vertical spectra (not shown) show
very similar evolutionary tendencies, with the only significant difference being a lack
of the -5/3 power law regime at the lowest wavenumbers. Spanwise energy spectra
(not shown) show very different evolutionary tendencies, however. The spectrum at
125 minutes is quite flat and 15 orders of magnitude below the fundamental of the
zonal spectra. Growth of spanwise energy is negligible for the first 10-15 minutes after
the 3D seeding. In the next 5-10 minutes spanwise spectral energy explodes as the
secondary instability undergoes a period of exponential growth. An inertial subrange,
characterized by a -5/3 power law appears at the highest wavenumbers. As ¢ continues
to increase, this subrange expands to lower wavenumbers, until at 180 minutes, most
of the spectrum lies within it.

5. Model performance results

The experiment described in the preceding section has been performed on the
512 processors Cray T3E machine at NERSC. Table 1 outlines the history of its
computational cost versus the overall model performance (measured by the wallclock
time) as functions of the simulated physical time; time step At; number of time steps
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Nt and average number of iterations Nj; in the elliptic Krylov solver (per timestep) per
5 minute portion of the experiment. In addition to summarizing elementary aspects
of the model efficiency, this table illustrates an important point that the overall model
performance (as well as the relative performance of various model components such as
advective transport, pressure solver, etc.; see [2] for a discussion) is an elusive entity, as
it is a complicated function of the simulated flow. Consider, for instance, that at the
onset of vigorous wave breaking at 145 min., the accuracy arguments [10, 13] dictate
halving the time step. Yet, as the flow becomes more quiescent following the onset
of breaking, the elliptic solver converges (see [17] for a discussion of the convergence
criteria in function of the model algorithm) using only a third as many iterations.

TABLE 1. Gravity-wave breaking experiment on 512 PE Cray T3E. The history of
the wallclock and CPU time (sec.) as functions of the simulated physical time (min.),
time step At (sec.), and average number of iterations in the elliptic pressure-solver per
5-min. portion of the experiment (only every second portion is shown).

physical time At Nt Ny wallclock time User CPU
125-130 5 60 32 1156 583159
135-140 5 60 31 1123 566583
145-150 2.5 120 19 1500 757776
155-160 2.5 120 15 1379 696690
165-170 2.5 120 12 1278 645268
175-180 2.5 120 11 1212 611210

The gravity-wave-breaking experiment was much too large to be used as a benchmark
for any systematic performance studies across various machines. Also, our limited
resources at NERSC precluded any ‘lavishness’ and left little room for additional tests
beyond the production runs. As a result, the relative performance issues were addressed
using either a 2D variant of the experiment, or our earlier LES calculations of convective
boundary layers, using the Eulerian variant of the model with the nonoscillatory option
of the MPDATA algorithm for the LE operator in (3), [2, 18].

The results of the model-performance analysis are gathered in Tables 2-4. They further
demonstrate that overall model performance is not only a function of the flow but
also depends upon the machine, communication software, compiler options, model
algorithms, and size of the problem. Table 2 describes the machines used in this study,
whereas Table 3 addresses the scalability issue exploiting a 2D variant of the gravity-
wave experiment (544 x 1 x 291 mesh with At = 5 s and Nt = 1800). These simulations
were performed on 16 and 32 processors only. On HP and T3D, the resulting speedups
are quite good regardless of the communication software employed (consistent with
our earlier experience {1, 2]), but they appear relatively poor on T3E-900 using either
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communication software. A similar analysis but using a larger 3D problem of the LES
boundary-layer experiment (Table 4) shows, for the larger number of Cray processors,
more respectable results closer to ~ 1.8 value concluded in our earlier studies [1, 2].

TABLE 2. Machines employed in model performance studies. Columns two to five
show the number of processors, location of the machine, nominal memory, and typical
measured performance (Mflops/PE), respectively. *Experiments performed in the
double 64-bit precision, to match the Cray standard. TInterdisciplinary Center for
Mathematical and Computational Modeling, University of Warsaw, Poland.

machine # PE location memory performance
T3E-900 512 NERSC 256 MB/PE 150-300
T3E-600 32 ICMmt 128 MB/PE 100-200
T3D 128 NCAR 64 MB/PE 15
HP* 64 NCAR 8 GB 120
Cray J932se 24 NCAR 8 GB 60
Cray J916 16 NCAR 2GB 60

TABLE 3. Scalability results using 2D semi-Lagrangian simulation of the gravity wave.
The “Oi” symbol in the first column refers to the com;filer optimization level. The
second column specifies the communication software employed. Columns 3 and 5 show
the wallclock time (sec.) of the entire experiment, whereas column 4 shows the resulting

speedup ().

machine comm. soft. 16 PE Va 32 PE
HP O1 MPI 22354 1.93 11571
HP 02 MPI 7192 1.91 3758
T3D Shmem 9911 1.88 5266
T3E-900 Shmem 4365 1.58 2768
T3E-900 MPI 5325 1.50 3542

The observed discrepancies are not necessarily surprising. Since the simulated turbulent
flows are highly chaotic and unpredictable, the model algorithm can react to even such
minor changes in the code setup as the number of processors or the compiler employed.3
This sensitivity is insignificant insofar as the physical issues are concerned, but it can
quite substantially affect model performance.

3 The different execution of sums inherent in elliptic Krylov solvers can affect both the
evaluated pressure field and the number of the iterations required.
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TABLE 4. Scalability results using 3D Eulerian simulations of convective boundary

layer. #The equivalent semi-Lagrangian run included for comparison. *J90
autotasking, shared (as oppose to dedicated) mode, runs; t24 PE run.
machine comm. soft. 8 PE Vs 16 PE Va 32 PE Ve 64 PE
HP O1 MPI 24308 1.89 12836 1.50 8542 1.60 5325
HP O2 MPI 8912 1.65 5395 1.63 3307 1.44 2299
HP O3 MPI 6516 1.64 3969 1.43 2777
HP 04 MPI 6463 1.54 4179 1.46 2859
T3D Shmem 16622 1.87 8866 1.61 5492 1.71 3164
T3D# Shmem 15569 1.78 8751 1.79 4876
T3E-900 Shmem 3199 1.43 2236 1.77 1260
T3E-900 MPI 3555 1.43 2476 1.63 1516
T3E-600 Shmem 9127 1.92 4735
T3E-600 MPI 7471 1.87 3995
J932se* none 14087 8545 4987t
Jo16* none 7696 7039

Table 4 contains a number of hints useful for the interested practitioner. We draw
attention to a few points that are especially noteworthy. The results from autotasking
runs on Crays J932se and J916 depend on the actual state of the machine, so they should
be viewed only as examples of possible overall performances; however, in our experience,
the wallclock times attained with maximal number of processors are representative.
The semi-Lagrangian run is about 50% more expensive than the Eulerian run at the
same At (here C<1). However, in our breaking gravity wave problem, much larger
time steps are used (with C<3) and, more important, the semi-Lagrangian algorithm
is more accurate as it treats equally the incompressible and compressible numerical
regimes of flow, dictated by the specified time-dependency of the problem geometry.

6. Remarks

The horizontal grid decomposition employed for the message-passing MPP
implementation of our model was dictated, in essence, by the physics of natural
geophysical flows that makes the vertical (gravity) direction distinct. Coincidently,
it has a purely computational advantage of admitting efficient applications of this same
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model algorithm and code design on different types of machines including distributed-
and memory-shared as well as single-processor architectures.

Although our MPP model has been designed to run efficiently on the distributed
memory architectures, it appears to perform reasonably well on standard vector
supercomputers. Consider that the original version of the same model, optimized for the
shared-memory Cray vector machines, achieves on average 65 —90 Mflops per processor
on J90s, depending on the number of processors and the application addressed; whereas,
the MPP code is only slightly slower on these machines with its speed falling in the
range of 60 — 85 Mflops/PE.

Regardless of all the objective model-performance measures discussed in this paper,
the single most important outcome of this study cannot be overstated: Our earlier, one
order of magnitude smaller but otherwise analogous to the 512 PE Cray T3E gravity-
wave simulation, experiments performed in the autotasking mode on 24 processor Cray
J90 at NCAR, used to take several days (this includes waiting in economy queues)
to accomplish simulation of 5 minutes of the physical time. Present experiments, on
the order of magnitude larger grid, were executed essentially overnight for the same 5
minutes period of simulated physical time!
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Figure 1. Results from the wavebreaking experiment: (a) contour density plot of In(0) in vertical yz
(spanwise) plane at zonal location x = -35 km at #=155 minutes showing region of vigorously breaking
waves; (b) time evolution of zonal spectral energy from 125 to 180 minutes (straight dashed lines have
slopes of -5/3 and -3).
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Atmospheric data assimilation is a contemporary scientific discipline for
studying the state of the atmosphere. Its object is to produce an optimal and
physically consistent four dimensional estimate of the state of the atmosphere
using observations from highly diverse sources available irregularly in space and
time. Typical methodologies of data assimilation use numerical prediction mod-
els, such as General Circulation Models (GCM), and objective analysis systems,
such as the Physical-space Statistical Analysis System (PSAS).

PSAS is one of the central components of the Data Assimilation System
being developed at the Data Assimilation Office (DAO), NASA/Goddard Space
Flight Center, for NASA’s Earth Observing System (EOS). It has been designed
to replace the traditional analysis scheme used in the earlier version of the DAO’s
Data Assimilation System with a state-of-art global statistical analysis scheme
capable of handling operationally a huge and diverse observational data flow,
and to provide the basic computational infrastructure for the DAO research
activities using advanced error covariance models.

To realize its scientific goals, PSAS is being designed to overcome several
computational obstacles, including the computational complexity of solving the
statistical analysis equations for error covariance matrices typically of order
100,000 x 100,000, and the software complexity of supporting advanced error
covariance models accessing a heterogeneous array of information resources.
At the same time, we are also actively exploring the path of implementing
the technology of distributed parallel computing to PSAS in an operational
environment.

Implementing a message passing parallel computing paradigm into an exist-
ing yet developing computational system as complex as PSAS is in many ways
a nontrivial problem. The technical challenges include issues such as reassessing
the system’s computational and operational requirements with appropriate so-
lutions, planning and managing a gradual system development path with paral-
lel software development efforts, and particularly, designing software structures
supporting planned but often unspecified future scientific extensions.
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Atmospheric data assimilation is a method of combining actual observations with
model forecasts to produce a more accurate description of the earth system than the
observations or forecast alone can provide. The output of data assimilation, some-
times called the analysis, are regular, gridded datasets of observed and unobserved
variables. Analysis plays a key role in numerical weather prediction and is becom-
ing increasingly important for climate research. These applications, and the need
for timely validation of scientific enhancements to the data assimilation system pose
computational demands that are best met by distributed parallel software.

The mission of the NASA Data Assimilation Office (DAO) is to provide datasets
for climate research and to support NASA satellite and aircraft missions. The system
used to create these datasets is the Goddard Earth Observing System Data Assim-
ilation System (GEOS DAS). The core components of the the GEOS DAS are: the
GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis
System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler
(which feeds analysis increments back to the GCM), and an I/O package for pro-
cessing the large amounts of data the system produces (which will be described in
another presentation in this session).

The discussion will center on the following issues: the computational complexity
for the whole GEOS DAS, assessment of the performance of the individual elements
of GEOS DAS, and parallelization strategy for some of the components of the system.
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Introduction

The National Aeronautics and Space Administration (NASA) Data Assimilation Office
(DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a
data assimilation system that provides production support for NASA missions and will
support NASA’s Earth Observing System (EOS) in the coming years. The GEOS DAS
will be used to provide background fields of meteorological quantities to EOS satellite in-
strument teams for use in their data algorithms as well as providing assimilated data sets
for climate studies on decadal time scales. The DAO has been involved in prototyping
parallel implementations of the GEOS DAS for a number of years and is now embark-
ing on an effort to convert the production version from shared-memory parallelism to
distributed-memory parallelism using the portable Message-Passing Interface (MPT).

The GEOS DAS consists of two main components, an atmospheric General Circulation
Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM op-
erates on data that are stored on a regular grid while PSAS works with observational
data that are scattered irregularly throughout the atmosphere. As a result, the two
components have different data decompositions. The GCM is decomposed horizontally
as a checkerboard with all vertical levels of each box existing on the same processing
element(PE). The dynamical core of the GCM can also operate on a rotated grid, which
requires communication-intensive grid transformations during GCM integration. PSAS
groups observations on PEs in a more irregular and dynamic fashion.
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I/0O Requirements

A primary requirement of the shared-memory GEOS DAS is to provide real-time support
for EOS instrument teams after the EOS AM-1 satellite launch scheduled for late 1998.
The first delivery of the MPI-based GEOS DAS will have to meet requirements imposed
by this mission. One requirement of the I/O system is the generation of a suite of output
streams [1] without impacting the performance of the system. The data files must be in
HDF-EOS format to allow subsequent distribution to instrument teams and users. There
is also an internal requirement for the GEOS DAS to assimilate 30 days of data in one
calendar day as part of generating long-term reanalysis data sets. This is the requirement
that places the greatest performance demands on the I/O system. Given that one day
of assimilation must occur in 48 minutes, very little time can be spent waiting for I/O
processes. The expected input and output data volumes for AM-1 support and reanalysis
are specified in the following table.

| Input Frequency | Size/day Format | Module |
Boundary Conditions 24 hr 5 MB GrADS GCM
Restart initial | 250 MB 64 bit GCM
Observations 6 hr 50 MB ODS | PSAS
User Input initial 1 MB text Both

| Output |
History 3or 6 hr | 1200 MB | HDF-EOS GCM
Obs with QC 6 hr 50 MB ODS | PSAS
Restart 24 hr | 250 MB 64 bit GCM
Diagnostic Info continuous 1 MB text Both

Table 1: This table shows the input and output streams for the GEOS DAS in support
of the EOS AM-1 launch. All data sizes are for one day of assimilation (not a calendar

day).

It is clear from Table 1 that I/O requirements of the system are dominated by the
GCM as roughly 70% of I/O is output from the GCM’s “History” component. The
History component reads user-generated namelist files that defines some number of output
streams and a collection of model state and diagnostic variables for each stream. As the
GEOS DAS assimilation moves forward in time, these history streams are written to disk
at frequencies defined by the user. History has the potential to be a significant bottleneck
in both the shared-memory and distributed-memory systems. This is especially true
because the History module does more than just write data to a file. It must convert the
data from the internal computational space to a grid space and data format useful for
the user. This often requires grid transformations and other formatting which may be
computationally expensive. Our highest priority for the GEOS Parallel I/O Subsystem
(GPIOS) is to design a portable and efficient MPI implementation of the GCM History

module.
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Example: m Dedicated VO PEs with n Compute PEs

0 1 2 3 4] eee|n-1

MPI compute group ther distributed
write to disk
[ slow ]
fite fite 1 file m-1

Once transfer from compute PEs to VO PEs is complete, compute
PEs are released to continue processing while VO PEs transform
and write to disk.

Figure 1: In the GPIOS parallel I/O concept, PEs are split into compute and I/0O nodes. The
top group of PEs is dedicated to the primary computation, while the middle row depicts a pool
of I/O PEs. For output, each I/O PE writes to an independent file. While data input can be
performed in an analogous manner, the amount of input data are small in comparison to the

output data.

Parallel 1/0 Design

A conceptually simple way of writing output from a parallel application is to gather the
data into global fields on a single processor which subsequently writes the data to a file.
The I/0 is serial and synchronous because all computation typically stalls until the I/O
process is complete. If an application needs to process and write large amounts of data,
this I/O time can significantly slow performance. For parallelizing the History module,
we have adopted the conceptual simplicity of the single-node output model and modified
it to allow performance gains. Rather than delegating I/O to a single PE that is also
tasked with computation, we use a group of PEs that are dedicated to I/O (Figure 1).
The compute PEs are delayed only long enough to gather the global fields on 1/O PEs.
The data transformations and physical disk I/0 occur asynchronously on the I/O PEs
while the compute PEs resume work on the GEOS DAS integration. The optimal number
of I/O PEs is a function of the number of output streams, the number of compute PEs,
and perhaps other factors such as the amount of memory on a single PE. This scheme is
portable to any machine with an MPI implementation.
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Status & Future Work

A prototype GCM written in Fortran 90 that uses MPI for communication is nearing
completion [3]. Key to building the GCM was the development of a set of base utilities
to support the data decomposition and to help isolate MPI calls from the application. [2]
In addition to routines that define and create the decomposition in a general way, there
are routines that facilitate the easy scattering of data from a global state to a distributed
state and vice versa. The gather utilities are used extensively by the parallel I/O system
and are the key infrastructure for its implementation.

We have developed the parallel History module and tested it in a unit test framework. We
have integrated it with the nearly complete MPI GCM prototype. The full system with
parallel I/O has been tested on SGI Origin, DEC Alpha, and Cray T3E. Initial results
are encouraging and show that large amounts of data can be written with little delay to
the GCM integration. Preliminary comparisons between the MPI GCM and the shared-
memory GCM indicate that History is much faster in the MPI version. Unfortunately,
realistic experiments are not yet possible as we await further development of the full MP1I
GCM, however the following timings from a unit test show good I/O performance and
scaling as the number of streams is increased.

| I/0 PEs 1 2 3 4 |

Compute PEs 4 4 4 4
Data size (MB) 56 | 112 | 168 | 224
Computation

Wait Time (s.) 22| 35| 52| 6.5
Effective

I/O Rate (MB/s.) |25.5|32.0 |32.3 | 34.4
Total I/O Time (s.) | 231 | 240 | 242 | 240

Table 2: The timing and throughput results on the SGI Origin2000 are listed for different
numbers of I/O PEs and a fixed number of Compute PEs. The computational wait time
is the time required for the Compute PEs to transfer output data to the I/O PEs before
resuming the GCM integration. As the data size increases linearly with the number of
I/0 PEs, the I/O rate and the overall I/O time remain nearly constant. The increase in
data size is accomplished by adding more streams, thus more I/O PEs for efficiency.

For the number of PEs we expect to use with the first version of the MPI GEOS DAS,
we think the dedicated I/O group concept presented here will provide adequate perfor-
mance. This concept may not scale to large numbers of compute PEs due to increasing
communication latency costs, although the use of asynchronous communication should
help hide latency. As portable parallel I/O interfaces such as MPI-IO become widely
available and supported by vendors, we plan to evolve GPIOS to make use of these tools.
Issues such as the overhead of grid transformations and the requirement to write data in
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a modified HDF format (HDF-EOS) will have to be addressed at that time. At this time
most work has been focused on the GCM due to it’s large portion of the I/0O load, but
attention must be given to I/O optimization in PSAS. It is expected that dedicated I/O
nodes can also be successfully used in PSAS.
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Parallel Atmospheric Data Assimilation

Atmospheric data such as temperature, moisture, winds, etc., collected by satellites and ground observation stations
provide only partial information about the atmosphere. They are assimilated to numerical forecasts to provide a
coherent, evolving state of the global atmosphere. The data analysis system, the Physical-space Statistical Analysis
System (PSAS) developed at the Data Assimilation Office at NASA's Goddard Space Flight Center, requires
computing resources far beyond the capabilities of even the state-of-the-art vector supercomputers. We describe an
efficient and scalable implementation of the PSAS on distributed-memory massively parallel supercomputers such
as Intel Paragon and Cray T3E; the implementations achieves superb performance as demonstrated by detailed
performance analysis of systematic runs on up to 512 processors on Paragon, T3D and T3E. Consequently, the
solution time is reduced to 24.6 seconds on 512-PE T3E from 5 hours on a single head of Cray C90 for a real
problem of 80,000 observations, a 740-fold reduction of turn-around time. We will discuss the code structures and
the modular programming approach used to separate the original codes from those for parallelization.
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Abstract

A Kalman filter for the assimilation of long-lived atmospheric chemical
constituents has been developed for two-dimensional transport models
on isentropic surfaces over the globe. An important attribute of the
Kalman filter is that it calculates error covariances of the constituent
fields using the tracer dynamics. Consequently, the current Kalman-
filter assimilation is a five-dimensional problem (coordinates of two
points and time), and it can only be handled on computers with large
memory and high floating point speed. In this paper, an implemen-
tation of the Kalman filter for distributed-memory, message-passing
parallel computers is discussed. Two approaches were studied: an
operator decomposition and a covariance decomposition. The latter
was found to be more scalable than the former, and it possesses the
property that the dynamical model does not need to be parallelized,
which is of considerable practical advantage. This code is currently
used to assimilate constituent data retrieved by limb sounders on the
Upper Atmosphere Research Satellite. Tests of the code examined
the variance transport and observability properties. Aspects of the
parallel implementation, some timing results, and a brief discussion of
the physical results will be presented.
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1 Introduction

This paper extends an earlier paper by Lyster el al. (1997) on the implemen-
tation of a parallel Kalman filter used for atmospheric data assimilation at
the Data Assimilation Office (DAO) of the NASA’s Goddard Space Flight
Center(GSFC). Even though the Kalman filter has been applied to meteoro-
logical problems for almost a decade, its full implementation in the context

of 4-dimensional data assimilation is not yet possible on today’s computers.

In order to develop a Kalman filter that has certain practical use, we focus
our model problem on the assimilation of relatively long-lived trace chemi-
cal constituents in the middle atmosphere. This problem is also of interest
to the earth science community. If we choose the potential temperature as
the vertical coordinate, then the assumption of two-dimensionality becomes
a good approximation in describing the transport dynamics. Thus, we have
implemented a Kalman filter in spherical geometry on an isentropic sur-
face in the stratosphere with either a medium (4° lat x 5° lon) or a high
(2° lat x 2.5° lon) resolution. Real-data observations for the Kalman fil-
ter assimilation currently come from the NASA Upper Atmosphere Research
Satellite (UARS) limb-sounding instruments that obtain retrievals of trace
gases in the stratosphere. Analyzed winds from the global atmospheric data
analysis system of the NASA/GSFC/DAO are used to drive the transport
model of the Kalman filter to assimilate real data.

In the following sections, we briefly discuss the Kalman filter equations, the
implementation strategies of the filter for parallel computers, timing infor-
mation of the filter on two different distributed-memory computers, some

numerical tests and experiments, and conclusions of our work.

2 Kalman Filter for constituent assimilation
If we neglect the diabatic effects, chemistry, vertical mixing and explicit
subgrid-scale parameterization of mass flux, we may then express the trans-
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port of the long-lived trace constituents on an isentropic surface as

ow
—3? + Vo Vgw = 0.

Here w represents the mixing ratio of the constituent, and Vj is the 2-D
wind vector on the isentropic surface. In matrix-vector notation, a discrete
version of this equation can be written as

4 t
Wk = Mk—l Wk—l’

where w} is an n-vector of constituent mixing ratio on a grid covering the
isentropic surface, and the n x n matrix M;_, denotes the action of the
discrete dynamics from time f,_; to time ;.

A discussion of the Kalman filter in full scope can be found, for example, in
the thesis by Cohn (1982). The Kalman filter algorithm essentially consists
of two steps in matrix-vector notation:

o forecast step:

Wi = Mk—lwz--—l’
P/ = My, P:_ M, +Q;,
= Mot (Mio1 P2_)T + Qi

e analysis step:

wi + Ki(w; — Hywf),
K. = P/HT(H;P{HT + R,)™,
P; I - Ky H)P{(I - K, Hy)T + KiReKT.

Wi

The last equation is referred to as the Joseph form of the error covariance
equation. When the optimal Kalman gain K is used, it simplifies to the
following optimal form

P: = (I - K.H,)P].
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In these equations, we have used the following notations: M denotes the
transport model matrix; w denotes the state vector; P denotes the error
covariance matrix; Q denotes the model error covariance matrix; K denotes
the (Kalman) gain matrix; R denotes the observation error matrix; H de-
notes the interpolation matrix; The subscript ‘k’ denotes the k-th time step;
The superscript ‘f’ denotes the ‘forecast’ step; The superscript ‘a’ denotes
the ‘analysis’ step; The superscript ‘o’ denotes the ‘observed’ quantity; The
superscript ‘T’ denotes the ‘transpose’ of a matrix.

3. Implementation strategies for distributed-memory parallel computers
The style of programming adopted in coding the Kalman filter is to have
the same compiled program run on many processors with each processor
responsible for different parts of the distributed memory. This is referred to
as Single Program with Multiple Data (SPMD). Earlier code development
was done partially on the Touchstone Delta and mainly on the Intel Paragon
computers at the California Institute of Technology (CalTech) with the Intel
NX communications library used for message passing. About a year ago, we
have implemented the MPI library and have since made runs on the Cray

T3E at NASA/GSFC.

In what follows, we briefly describe the implementation strategies for the

forecast step and the analysis step, respectively:

(a)forecast step:

The state vector wi is evaluated first. The linear discrete dynamics Wy
depends on the wind field but not on wi. We then evaluate the covariance
matrix P{. The covariance computation involved in the Kalman filter is
floating-point count- and memory-intensive, so it is important to distribute
effectively the large (n x n) matrix P. We have considered two implementa-

tion strategies, the operator- and the covariance-decompositions:

i) operator decomposition
The operation MP can be represented as [MP,, MP,,--- ,MP,,--.-, MP,],
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where P; is the ith column of matrix P. Each P; is state-vector-like with
the same structure as w. The operator decomposition is based on a decom-
position of the domain of the transport model M. For the forecast of w
or a column of P, this is a classical domain decomposition algorithm. The
schematic for operator decomposition for storing large (n x n) matrices and
performing M(MP)7 is shown in Fig. la.

1i) covariance decomposition

In this case, the covariance matrix P is partitioned along rows so that whole
columns are stored contiguously on each processor. The transport model
operator such that M operates on whole columns of P. On a message-
passing computer with number of processors N, > 1, load balancing must
be attained for efficiency. The schematic for covariance decomposition for
storing large n X n matrices and performing M(MP)T s shown in Fig. 1b.

iii) comparison of the two decompositions

Comparison of the measured speedup curves using the Touchstone Delta and
the Intel Paragon for the two approaches discussed above are shown in Figs.
2a and 2b. Examination of them shows that the latter scales much better
than the former. It is well known that parallelization of different transport
models is, by and large, no easy task, especially for the semi-Lagrangian ones.
The covariance decomposition approach makes it unnecessary to parallelize
the transport model, and this enables the choice of transport scheme on the
basis of scientific merit alone. This is the reason why we favor the covariance
decomposition as the default approach of the Kalman filter program.

(b)analysis step:

The gain matrix K is evaluated first in the analysis step. For bilinear inter-
polation, the (p x n) matrix H has only four non-zero elements in each row,
so it is treated as an operator in the code. Since P/ is distributed, and K
is reproduced identically on all processors, partial sums of P/H’ on individ-
ual processors are first obtained then globally summed over all processors to
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Figure 1: (a)Schematic for the operator decomposition approach;
(b)Schematic for the covariance decomposition approach for storing large
size-n? matrices and performing M(MP)7.

171



Figure 2: (a)Speedup curves for the domain decomposed van Leer transport
algorithm implemented on the Touchstone Delta; (b)The actual speedup
curves for the forecast step, the analysis step and the the full Kalman filter on
the Intel Paragon for the medium resolution using covariance decomposition
and the optimal form analysis equation.

get the net result. The matrix HP/H7 is evaluated as H(HP/HT), with
the matrix P/HT already existing on all processors. After HP/HT + R is
obtained, its inverse is evaluated by an eigenvalue decomposition solver of a
symmetric matrix. There is a memory burden in storing K and P/H7 on all
processors, which becomes comparable to the storage of P when p =~ n/N,.

After the evaluation of the gain matrix K, we evaluate the covariance matrix
P;. For the optimal form, P* is evaluated as P/ —K(HP/). The second term
uses K and (Pf HT)T, both of which are identically stored on all processors.
For the Joseph form, P is evaluated as (I — K Hy) [P/ — K(HP/))" +
KRKT . which is generated from HP/, K and R all stored identically on all
processors.

To finish up the analysis step, we evaluate the state vector w§. This is a

relatively smaller calculation, and is carried out identically on all processors.
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The innovation vector w® — Hw/ is evaluated and saved along with w for

collection of innovation statistics.

4 Timings for the parallel Kalman filter

(a)with the Intel Paragon

We first examine the timing information for the Kalman filter using the Intel
Paragon at CalTech. The speedup curves corresponding to the forecast step,
the analysis step and the full filter for medium resolution have already been
shown in Fig. 2b. Curves here using the Intel Paragon are obtained by
directly connecting points corresponding to numbers of processors 8, 16, 32,
64, 128, 256 and 512. We chose these numbers partially because we had to
comply with the queue arrangement at the time those runs were made. The
actual times in seconds per time step for the analysis using the Joseph form,
the forecast step and the full filter are shown in Fig. 3a for the medium
resolution and p=14 observations per time step. The dominant cost of the
analysis for large numbers of processors is clear. A typical 10-day assimilation
run takes 960 time steps, which evaluates to 45 min. of wall clock time for the
full filter with 256 processors. The corresponding result of the actual times
in seconds per time step for the optimal form is shown is Fig. 3b. Since the
optimal form is simpler arithmetically, the actual times for the analysis are
relatively small. Only for large number of processors N, > 256 does the time
for the analysis step exceed that of the forecast step. A 10-day run for the
optimal form takes about 34 min. of wall clock time of the full filter using
256 nodes due to the simpler calculation in the analysis step.

Due to the limitations of main memory, high-resolution runs can only be
performed on 256 and 512 processors of the Intel Paragon. For a 10-day run
with 960 time steps on 256 processors, the total time for the full optimal
Kalman filter at high resolution is 7.6H. And it takes 5H using 512 nodes.
The ratio of the total time for 256 to that for 512 processors is 1.52 which is
considerably better than that for the medium resolution, 1.35.
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Figure 3: The actual time (s) per time step of the forecast step, the analysis
step and the full Kalman filter on the Intel Paragon for medium resolution
using covariance decomposition.

(b)with the Cray T3E

We will now show the timing information for the full filter using the Cray
T3E at NASA/GSFC. Comparison of the medium-resolution speedup curves
for the full filter for the Paragon and for the T3E is shown in Fig. 4a. In
the Cray T3E case, the solid curve represents the connection of points for
numbers of processors 10, 12, 16, 32, 46, 92, ..., 414, 460, 512 somewhat
similar to the curve for the Paragon. Notice that multiples of the meridional
dimension of the state vector, 46, were used in making runs. It is clear that
the T3E is a faster computer than the Paragon by a factor of about 3. What is
also shown in dashes is the actual step-function-like behavior of the Kalman
filter performance as a result of the way the covariance decomposition is
domain-decomposed in the code when the number of processors is greater
than the meridional dimension of the state vector. Except for those numbers
of processors mentioned above, additional numbers such as 91, 137, 183, ...,
459 were included in plotting the dashed curve. It is seen that use of number
of processors from 47 up to 91 produces a nearly constant time per time step.
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This implies two things: (1)the additional processors between 47 and 91 are
not contributing to the speedup of the forecast step because fast processors
have to wait for the slow ones to finish their work; (2)the speedup of the
analysis step is not large enough to really improve the speedup of the total
step. Use of 91 (=2*46-1) processors is the least economical choice.

For the high-resolution runs, the meridional dimension of the state vector is
91. The T3E has enough memory space to allow for runs with number of
processors greater than or equal to 182. In analogy to Fig. 4a, we show the
comparison of the full filter using, respectively, the Paragon and the T3E for
the high-resolution grid in Fig. 4b. It is clear that the scalability for this
resolution is markedly better than that for the medium resolution. It can
also be inferred that the forecast step outweighs the analysis step roughly for
all the numbers of processors used up to 512.

Medium resolution (4° let x 5° lon)

time (sec) par time step

time (sac) par lime step

Figure 4: Comparison of the optimal-form timings of the full filter using,
respectively, the Intel Paragon and the Cray T3E; Solid curves denote the
envelopes , and the dashed curve illustrates the true behavior using the T3E.

175



5 Numerical tests and experiments

Results of two numerical tests using solid-body-rotation winds and two nu-
merical experiments assimilating the mixing ratio of methane (CH,4) on the
1100K isentropic surface from two UARS limb sounders, the Cryogenic
Limb Array Etalon Spectrometer (CLAES) and the Halogen Occultation
Ezperiment (HALOE), will be briefly described below.

(a) test for consistent evolution of the error variance

For nondivergent flows with no observations, the variance is only being ad-
vected by winds. Use solid-body rotation with flow over the poles as the
winds, we may test the implementation of the discrete covariance propaga-
tion. The variance field at time zero and that after a full rotation are shown
in Fig. 5. Except for a slight north-south asymmetry, the overall shape is
well preserved indicating a sound variance propagation near the poles. This
test indicates that our covariance transport is correctly coded.

(b) observability test

This test involves both forecast and analysis steps using synthetic perfect
observations to test reduction to zero of the total variance in finite time if the
observability condition is met. Zonal solid-body rotation winds are used, and
observations are made at all grid points along a fixed meridian at each time
step such that the entire flow is observed perfectly in one rotation. Because
the observation error variance matrix R is taken to be zero, the Joseph form
of the analysis step is used to help ensure numerical stability in this extreme
case. The initial error covariance is obtained from the SOAR covariance
function with values of correlation length L=(1000, 500, 5km). The total
variance versus time is plotted for each L value in Fig. 6. For L=1000 and
500km, where the correlation length is comparable to the grid spacing near
the equator and greatly exceeds the grid spacing near the poles, the variance
decreases rapidly at first, then decreases almost linearly, and finally reaches
zero in one day. For L=>5km, the correlation length is well below the grid
spacing, corresponding to an almost diagonal initial covariance structure. In
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Figure 5: (a)The initial variance; (b)the final variance after a full rotation of
the winds for solid-body wind propagation over the poles.
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this case, the total variance is expected to decrease almost linearly with time,
which is exactly what our test result shows.

Observability test

Figure 6: The total variance vs. time for a meridional observing network and
an observation error covariance matrix R=0. The initial error covariance
matrix is obtained from SOAR covariance function with values of correlation
length L= 1000, 500 and 5km. The rotation period of the solid-body winds

about the polar axis is one day.

(c) UARS CLAES and HALOE experiments

A 4-day pure advection and two 4-day assimilations, respectively using the
UARS CLAES (dense) and HALOE (sparse) observations, of the 1100K
methane mixing ratio field have been conducted. Results for day-4 pure-
transport and the CLAES assimilation are shown in Fig. 7. A wave break-
ing near the southern tip of Africa can be seen. The CLAES assimilation
depicts the wave breaking pattern in finer detail when compared to the pure-
transport result. The HALOE assimilation result shows a wave breaking
pattern which resembles the CLAES result very much, even though only a
few observations are available and are located in the tropics. This suggests
that the covariance field in the Kalman filter helps to influence the wave
breaking pattern in mid- latitudes in this case.
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Figure 7: 1100K mixing ratio field for the pure transport and the Kalman
filter assimilation of UARS CLAES observations on day 4.

The three-dimensional field of methane mixing ratio can be generated by a
layering of results from a two-dimensional Kalman filter. Fig. 8 shows a
sample 3-D plot.

6 Conclusions
Here we briefly summarize what we have accomplished in regard of imple-
menting the parallel Kalman filter at DAO:

We have implemented on distributed-memory parallel computers a Kalman
filter for the assimilation of atmospheric constituents on isentropic surfaces
over the globe. The code has been parallelized using the Message Passing
Interface (MPI), so it can run on any parallel computers that support this
interface. We have thus far run this code on the Touchstone Delta, the Intel
Paragon and the Cray T3D and T3E, all with success. Lately, many Fortran
90 features such as ‘allocatable arrays’, ‘pointers to arrays’ and ‘modules’

have been implemented in the most current version of the code.

We have developed a covariance decomposition approach as the basis of the
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Figure 8: A sample plot of the three-dimensional field of methane mixing
ratio generated by layering of results from a two-dimensional Kalman filter.

parallel algorithm in which we distribute the columns of the forecat-analysis
error covariance matrix on different processors. This approach is not only
efficient in terms of parallelization, it also has the important advantage that it
1s not necessary to parallelize the model transport code, only that it fits onto
the memory of each processor, which is usually the case. The less scalable
operator decomposition approach was abandoned because it also required
parallelization of the transport model.

With regard to the wall clock speed, a 10-day run using UARS CLAES
observations can be completed in 34 minutes for the optimal form of the
analysis at medium resolution on 256 processors of the Intel Paragon with
O4 and noieee compiler optimizations. The same run takes 13.6 minutes
on the Cray T3E at NASA/GSFC, with some minor extra computation to
improve the quality of the code. The T3E is about 2.5 times as fast as
the Paragon at this resolution. For high resolution, a 10-day run using the
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optimal form takes 5H on 512 processors of the Paragon and approximately
1.5H on the T3E. Note that at high resolution, the T3E is about 3.3 times
as fast as the Paragon, which implies that our Kalman filter problem runs
more efficiently on the T3E at high resolution. Another advantage in using
the T3E is that its higher precision may help prevent potential numerical

difficulties in the computation.

For medium resolution, the Kalman filter forecast step shows some reduc-
tion in scaling when the full 512 processors of the machines are used. This
is primarily due to communication overhead involved in the global matrix
transpose. The reduction in scaling for the analysis step is more severe due
primarily to the serial (unparallelized) calculation of the Kalman gain matrix
on each processor. This reduction is due, probably more significantly, to soft-
ware simplifications that involve the use of global sum library subroutines.
In contrast, for high resolution, the scaling seems to be reasonably good for

up to 512 nodes.
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Abstract

The NRL Layered Ocean Model (NLOM) is written in the tiled data parallel
programming style, and uses an application specific programming interface to
isolate operations that require communication. This allows different scalable
programming models to be “plugged” into NLOM with relatively little effort.
NLOM is similar to other OGCM’s, except that it uses a direct Helmholtz’s
equation solver as part of its semi-implicit time scheme and typically runs
with a very large horizontal extent and very few layers in the vertical. There
are now several Fortran-based SPMD programming models to choose from on
machines with a hardware global memory: a) MPI-1 message passing, b) MPI-2
put/get, c) BSP, d) SHMEM, ¢) F--, f) OpenMP, and g) HPF. These models are
compared and contrasted based on actual experience with NLOM and related
kernel benchmarks.

Introduction

The NRL Layered Ocean Model, NLOM, has been under continuous development
for 20 years [1], [2], [3]. It has been used to model semi-enclosed seas, major ocean
basins, and the global ocean. NLOM has been optimized for the problem space of
Navy interest, simulation now-casting and prediction of fronts and eddies, and for
such problems it is is 10-100 times more efficient (in operations performed per result)
than competing OGCM’s.

The current implementation of the model uses the tiled data parallel programming
style. Consider the following simple serial code fragment:

REAL A(IH+1,JH),DA(IH+1,JH)
DO J= 1,JH; DO I= 1,IH

DA(I,J) = DX*(A(I+1,J) - A(I,1))
ENDDO; ENDDO

The arrays A and DA have been extended by a one column “halo” to allow a clean
implementation of a periodic boundary. On entry A(IH+1, :) must be identical to
A(1,:). The equivalent tiled data parallel version adds a halo on all sides and splits
the array into sub-domain tiles:

REAL A(O:IHP+1,0:JHP+1,MP,NP),DA(O:IHP+1,0:JHP+1,MP, NP)
'HPF$ DISTRIBUTE A(x,*,BLOCK,BLOCK),DA(*,*,BLOCK,BLOCK)
DO N= 1,NP; DO M= 1,MP
DO J= 1,JHP; DO I= 1,IHP
DA(I,J,M,N) = DX*(A(I+1,J,M,N) - A(I,J,M,N))
ENDDO; ENDDO;
ENDDO; ENDDO;
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If MP and NP are both 1, this is Single Program Multiple Data (SPMD) domain
decomposition. A 2-D, MPE by NPE, grid of processors are all running this identical
program, with IHP=IH/MPE and JHP=JH/NPE. Provided the halo is up to date, the
code fragment calculates the required values over the subdomain owned by the local
processor. Alternatively, if MPxNP represents the number of processors, this is data
parallel High Performance Fortran (HPF) [4] and the compiler does not need to
generate any off-chip communication. It is also then appropriate for autotasking of
the N loop using Fortran 77 compilers on SMP systems.

By using cpp macros, NLOM can select between scalable programming models at
compile time while maintaining a single source code. An application specific pro-
graming interface (API) is used to isolate operations that require communication
(halo updates etcetera). The API must be implemented for each new programming
model, but the rest of the code is largely independent of the model used. For more
information on scalable NLOM see Wallcraft and Moore [5], [6].

In the area of scalability, NLOM performs similarly to other OGCM’s, except that
it uses a direct 2-D Helmholtz’s equation solver as part of its semi-implicit time
scheme and typicaly runs with a very large horizontal extent and very few layers in
the vertical. For example, a six layer 1/32 degree Pacific model is typical of “large”
problems today and it has a 4096 by 2688 by 6 grid. Since it has so few layers
in the vertical, NLOM uses 2-D domain decomposition (with the vertical dimension
“on-chip”) and performs all operations on 2-D slabs. OGCM’s with more degree’s
of freedom in the vertical might still choose 2-D domain decomposition, but would
typically perform communications on an entire 3-D field rather than on individual 2-
D slabs. The direct 2-D Helmholtz’s equation solver requires transposing from a 2-D
to a 1-D domain decomposition, and therefore potentially reduce overall scalability.
In general, scalability of NLOM is excellent on current scalable systems (using 64-256
nodes per job) because the 2-D arrays are so large.

SPMD programming models

There are now several Fortran-based SPMD programming models to choose from on
machines with a hardware global memory.

MPI-1

Message passing is the most general scheme but it requires the source and target
processor to cooperate in the transfer. MPI-1 is the message passing library of choise
for SPMD codes, and is available on all platforms {7]. NLOM can use MPI and
has cpp macros to hide word length differences and to select between several possible
optimizations at compile time: (a) MPI_SENDRECV in place of the default non-blocking
point to point calls, (b) SSEND in place of the default SEND, (c) replacements for
ALLGATHER, ALLREDUCE(MAX) and ALLREDUCE(MIN) that use a binary tree on one
dimension and a ring exchange on the other dimension, and (d) serialized array I/0.
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SHMEM

SHMEM is Cray’s one-sided put/get direct memory access library [8]. It is only suit-
able for machines with a hardware global shared memory. SHMEM is available on
all Cray and SGI systems (Cray PVP, Cray T3E, SGI Origin 2000), but not on com-
peting SMP or DSM systems from other vendors (e.g. Sun E10000 and HP/Convex
SPP-2000). Unlike the other libraries described here, all SHMEM calls are (locally)
blocking. Thus the standard Fortran assumption that there is a single thread of con-
trol and that any changes to memory or disk (buffers) caused by a subroutine call will
happen before it returns is valid for SHMEM, but not necessarily for non-blocking
calls in other libraries. The MPI-2 standard [9] has a good discussion of these issues,
which can cause optimization problems in Fortran 77 but are much more serious for
Fortran 90. SHMEM put updates memory on another processor, but this is not a
problem if either (a) put is never used, or (b) the appropriate syncronization calls
are included. The typical SHMEM program relies on a fast global barrier, and uses
COMMON to hold arrays and/or buffers that are accessed from other processors. NLOM
can use SHMEM and has cpp macros to hide word length differences and optionally
to use local syncronization in place of some global barrier calls.

BSPlib

Bulk Synchronous Parallel delays put/get operations to the end of a “super-step”,
which allows implementation on machines without a global memory. Note that this
implies that the put/get operations are non-blocking. There is a portable implemen-
tation, BSPIlib, that runs on many machine types [10]. However, BSPlib effectively
requires several global barriers at the end of each superstep because it imposes a
particular order on puts and gets. There is formally no need for both put’s and get’s,
and NLOM’s SHMEM version (for example) never uses put, but there is no way to
tell BSPIib to skip put processing. BSPlib has been designed to be called from C, e.g.
sizes in bytes and byte offsets. There is a Fortran interface but it is a direct mapping
of the C version, and is therefore very obscure to Fortran programmers. However, the
library is small enough that it would be relatively easy to build your own (improved)
Fortran interface. Unlike SHMEM, BSPlib only allows access to remote memory
via pre-registered “windows”. This potentially provides a safer interface, and allows
non-static arrays to be accessed remotely, but at the cost of more complicated (and
slower) code. BSPlib provides an alternative blocking get (on global shared memory
machines only) that acts like a SHMEM get, and it is often possible to define a single
memory window that includes all named COMMON areas. So BSPlib can be made to
look almost exactly like SHMEM. However, BSPlib barrier performance prevents it
being a viable (portable) alternative to SHMEM.

MPI-2

MPI-2 put/get is patterned on BSP, but with hooks that allow optimization for global
memory machines (including non-global syncronization) [9]. If well implemented, this
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will provide a portable alternative to SHMEM. MPI-2 includes all of MPI-1, and it
also includes a very powerfull parallel I/O interface. Thus parts of MPI-2 are usefull
even for message passing codes. It is also possible to use MPI-1 message passing for
some things and MPI-2 put/get for others. However, there are currently very few
MPI-2 implementations (none from US vendors). Like BSPlib, MPI-2 uses memory
windows and non-blocking puts and gets. However, MPI-2’s Fortran interface is much
superior to that in BSPlib. As is typical of MPI, the MPI-2 one-sided interface is very
rich. It is as easy to write a Bulk Synchronous Parallel program with MPI-2 as with
BSPlib, but this involves using a very particular small subset of MPI-2’s one-sided
capabilities. It does not seem easy to “emulate” SHMEM using MPI-2, and such an
emulation would certainly not be portable to all machines that might benefit from
put/get. Fortunately, translating a SHMEM program to use (portable) MPI-2 should
be straight forward. However, the performance of MPI-2 global barriers will be critical
if it is to replace SHMEM. Some of the non-global syncronization options in MPI-2
may improve performance over global barriers, but fast global barriers are going to
be essential if MPI-2 is going to gain wide acceptance by SHMEM programmers.

F——

F-- is a simple extension to Fortran that allows SHMEM-like put/get to be expressed
via assign statements [11]. At a minimum this is a much clearer way to express
put/get than a subroutine call. There are more concrete advantages, including lower
latency (no subroutine call overhead) and the possibility of applying all the usual
compiler optimizations to remote memory accesses. As a language F-- is currently
incomplete because it cannot conform to Fortran I/O semantics but does not provide
an alternative. There are experimental versions of F-- for the SGI Origin 2000 and
the Cray T3E, but no compilers from other vendors. A major potential advantage of
F-- over SHMEM (or MPI-2) is compiler optimization of fine grain code fragments
involving remote memory accesses. However, this has yet to be demonstrated in
practice. One problem area for optimization is that the compiler must assume that
any variable marked for remote access could in fact be remotely accessed at any time
during execution of that subroutine (variables only need be marked in subroutines that
perform remote access). This has the effect of drastically reducing the optimization
possibilites for such variables, so F-~ could end up being slower than the equivalent
SHMEM (or OpenMP) code. This could have been avoided by providing a more
relaxed memory model as part of the F-- definition.

OpenMP

OpenMP is a set of compiler directives that provide a high level interface to threads
in Fortran, with both thread-local and global memory [12]. OpenMP can also be
used for loop-level directive based parallelization, but in SPMD-mode N threads are
spawned as soon as the program starts and exist for the duration of the run. The
threads act like processes (e.g. in MPI), except that some memory is shared and
there is a single I/O name space. There are alternatives, but the closest mapping
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to process-based SPMD programs is for almost all memory to be thread-local (i.e.
one independent copy per thread) with global memory (visible to all threads) being
used only as “buffers” for communication. A global buffer would typically hold N
“local” buffers (one per thread). It is possible to use threads directly to create a
threaded SPMD Fortran program, and portability is achievable via the Posix thread
standard [13]. However, Posix threads are very low level and are difficult to use
from Fortran. OpenMP provides a higher level, Fortran friendly, portable interface
to threads. A threaded program has a single I/O space, and simultaneous calls from
multiple threads may be unsafe. OpenMP has a more relaxed memory model than
F--, that should not hinder optimization of shared variables.

HPF

High Performance Fortran provides a single-thread global memory user interface by
doing communication and work distribution in the compiler, but it requires directives
to distribute arrays across each processor’s “local” memory [4].

Programming Issues

Portability

A language or library is “portable” if there are well understood guidelines for how
to use (a subset of) the language or library so as to obtain good efficiency on a wide
range machines (for a significant class of problems). SHMEM, F-- and OpenMP
are unlikely to perform well on machines without a hardware global shared memory.
BSPlib and MPI-2 put/get can take advantage of a hardware global shared memory,
but can in principle also work on “shared nothing” systems, such as the IBM SP.
How well MPI-2 will in fact work on such systems is unknown at present. A very low
latency interconnect (and perhaps hardware support for barriers) might be all that
is required to make MPI-2 put/get viable. Both HPF and MPI-1 can in principle be
implemented efficiently on any scalable system.

MPI-1 is now available for all scalable systems, often via a vendor supported library.
It is typically now possible to write a “portable” implementation of a given algorithm
in MPI by following a few simple guidelines (defer syncronization, ISEND before
IRECV, persistent communication requests, stride-1 buffers, don’t use most collective
operations). In addition, the syntax of MPI is regular enough that it is easy to
provide several alternatives (selected at compile or run time). However, collective
operations are often implemented very poorly. Thus a version using explicit point
to point communications is almost always required for efficiency on some machines,
with perhaps a MPI collective alternative for those few vendors who have optimized
versions. Note that running many MPI collective operations twice on the same data
is not guarenteed to produce the same result. This rules out such operations for many
portable programs.

MPI-2 will probably become almost as widely available as MPI-1. It is not at all clear
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today what will be required to write portable put/get code using MPI-2. The key
unanswered question is how easy will machines, such as the HP/Convex SPP-2000,
with two kinds of memory (local and global) be to program using MPI-2 put/get.
A secondary portability concern is how efficiently vendors implement the various
syncronization options. Since the efficiency of MPI-2 put/get may be low on at least
some “shared nothing” systems, programs that must run on such machines would
have to at least provide a MPI-1 message passing alternative to each put/get. This
reduces the ease of use advantage for put/get over message passing. It is relatively
easy to add MPI-2 put/get as an option to an existing MPI-1 message passing program
(selectively replacing only those operations that are faster using put /get).

BSPlib is available as source code for many machine types and there is an effort
underway to get vendor’s to produce optimized versions. However, given that BSPlib
is quite slow on machines with a global shared memory and MPI-2 can be used to
write BSP programs, there does not seem to be much future for BSPlib as a portability
tool.

HPF is widely available, but the language standard was not designed for portability.
For example, there are no portable default array distributions so a portable program
must include compiler directives in every subroutine defining the layout of every
array used by that subroutine. It is also still the case that alternative distributions
can produce huge differences in performance and (more importantly) that different
distributions perform well with different compilers. One approach to HPF portability
is to use the Portland Group HPF compiler, which is available on many platforms
(i.e. use a portable compiler, rather than a portable source code).

SHMEM is a very small library providing very fast put/get. However, no vendor
other than SGI/Cray has chosen to provide an implementation. A portable program
that uses SHMEM today must provide an alternative (typically MPI-1) for non-SGI
machines. For those looking to migrate SHMEM programs to an API that is portable
across shared memory machines, the viable options seem to be MPI-2 and OpenMP.
MPI-2 provides put/get but with significant differences to SHMEM and with unknown
performance. OpenMP is available today with performance comparable to SHMEM,
but migrating from SHMEM to OpenMP may require changes to subroutines that
don’t currently call SHMEM. The issue of 1/O is particularly problematic.

There are experimental versions of F-- for the SGI Origin 2000 and the Cray T3E,
but no compilers from other vendors. If other compilers existed, the major portability
issue would be performance which at least initially might be relatively low because of
the memory model required for global variables. How to implement F-- on machines
with both local and global memory would also be an issue. F-- has the best syntax
of all the alternatives for SPMD Fortran on global shared memory machines, but
without a portable (source to source) compiler or support from several major vendors
it is not a viable portability tool.

OpenMP is available in beta today from SGI on the Origin 2000, and from KAl as a
source to source compiler on several machine types. It has wide support and should
soon be available on all machines with a global shared memory, from PC’s to MPP’s.
The standard is not rigerous enough to be confident about portability between the
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many compilers that will exist. For example, it does not define the memory type
(SHARED vs LOCAL) of variables with the SAVE atribute inside a subroutine. A
program will definately break if a compiler allocates one kind of memory and the
program assumes the other, so the only portable solution at present is to never use
a SAVE statement in an OpenMP program (except for named COMMON). Once
several implementations of OpenMP are available, it is likely that a portable subset
of the language wil emerge. The only portable performance issue seems to be where
global variables are placed in memory. OpenMP provides no mechanism to control
this, and vendors are free to add their own (incompatable) extensions to OpenMP
for laying out such arrays in memory. Some machines don’t care about layout (e.g.
Sun E10000) and some have run time layout mechanisms (e.g. SGI Origin 2000),
but the performance on others may depend critically on shared array layout. Note
that thread-local and shared variables map naturally to local and global memory
respectively on machines with two kinds of memory. The only issue is where in global
memory shared arrays are located.

Ease of Use

How easy each of the programming models is to use is obviously highly subjective.
Message passing is certainly more difficult than put or get in that both sides of each
memory transaction must cooperate in the exchange. This is more of an issue in cases
with irregular communication patterns. The regular patterns typically associated
with finite difference OCGM’s are not usually difficult to express via message passing.
The difficult part of put/get programming is syncronization, which is similar in all
put/get models, but F-- is probably the easiest of all the process-based pure SPMD
programming models to use.

A strong ease of use argument can be made for the global view of arrays provided
by HPF. However, this is somewaht counter balanced by the difficulty of laying out
arrays in memory. The extra boiler-plate code (compiler directives) needed for HPF
programs is non-trivial. Many programmers seem to have “voted” for the less easy
to use MPI-1, perhaps because HPF is easy to understand but does not necessarily
provide a simple migration path from the existing code base. The performance of
HPF relative to MPI-1 is also an issue.

OpenMP provides a programming model intermediate between F-- and HPF. It can
use thread-local independent arrays, like F-- local arrays, or shared arrays, like HPF
arrays, and can emulate F-- globally accessable local arrays using shared arrays with
an extra dimension for the thread count. The primary difficulty with OpenMP is that
SPMD threads that exist for the entire program are relatively new to Fortran pro-
grammers, and require some changes over process-based SPMD programming prac-
tices (particularly for I/O). Like all compiler directive based API’s, the number of
directives required can get out of hand (although it requires many fewer than HPF).
OpenMP can be significantly easier to use than even F-- for irregular communica-
tions. For example a generic transpose operation in OpenMP might copy from one
set of thread-local arrays (the input layout) into a shared array that uses the “nat-
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ural” dimensioning and then copy out into a second set of thread-local arrays (the
output layout). Both copy operations are trivial to program, and this works for any
local distributions of the array. The real issue for OpenMP is not ease of use, but
performance. In the transpose example, we have certainly done one extra copy of the
entire array but this does not necessarily mean that this method is twice as slow as
a direct copy from one layout to the other. In general, the fact that the programmer
has no control over the layout of shared arrays in global memory might slow down
some codes. However, threads are generally a big win over processes - particularly
when mapping multiple threads or processes onto fewer processors.

1/0

Fortran has a specific model of I/O that is intrinsically single-thread, and which
is violated by parallel I/O to a single file in all programming models except HPF.
HPF can do parallel I/O that conforms to standard Fortran, but only if the compiler
does this for you. All other API’s except MPI-2 largely or completely ignore 1/0.
Generally serial writes from a single processor (or a single thread) works, as does
parallel reads from any number of processors (but not from multiple threads). In
some cases, parallel writes to non-overlapping records in a single file can be faster
than serializing all writes - but there are no guarentees that this will work.

OpenMP has additional problems because there is just one process, and therefore
one set of I/0 files and pointers. Threaded I/O is actually well understood in C
[13]. If the OpenMP Fortran’s I/O library is “thread safe”, any attempt to read and
write in parallel to the same file (and perhaps to different files) will automatically be
serialized. If the library is not safe, then the program must serialize I/O explicitly.
Since there is only one I/O name space, only one thread should open and close a
file and multiple reads of the same file from different threads will provide a different
record to each thread. In contrast, for SPMD processes, each process must open and
close a file it does I/O to and multiple reads of the same file from different processes
will provide each with the same record.

NLOM inputs scalar control variables by reading them independently on all proces-
sors. This works well for process-based SPMD models, and is much less (program-
ming) effort than the alternative of reading them on one processor and then broad-
casting them to all others. This does not work for OpenMP, so NLOM now reads
scalars into shared temporary variables from one thread under OpenMP (and into
local temporary variables on all processes otherwise) and then copies the temporary
variables into local variables on all threads/processes. This works with both threads
and processes, but is not very transparent code. If OpenMP was the only target, it
might be possible to leave input scalars in shared variables which would make the I /O
code very similar to the uni-processor original (except for a few compiler directives).

MPI-2 contains an extensive API for parallel I/O. It is perhaps the most important
reason for migrating from MPI-1 to MPI-2, particularly since the performance of MPI-
2 put/get is as yet unknown. MPI-2 I/O looks like collective non-blocking message
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passing. Very general patterns of I/O are allowed, but probably a much smaller subset
will actually provide good performance. Portability is an issue, particularly since the
API includes potentially machine specific “hints” on file layout etcetera.

The fact that MPI-2 I/O is non-blocking implies that it is asynchronous I/O. On
typical scalable systems, with huge memory capacities, it is often practical to buffer
an entire dump of all prognostic variables. Which suggests that most OGCM'’s really
require asynchronous I/O more than they do parallel I/O. There is no standard
method for specifying asynchronous I/O in Fortran, but if it is available OpenMP
can easily implement asynchronous array I/O using a shared memory buffer (even
though parallel I/O is not typically possible). Similarly a HPF compiler might provide
non-standard asynchronous I/O. The other programming models may need sufficient
unused memory on a single processor (rather than globally) to hold an entire dump
of all prognostic variables before asynchronous I/O becomes a possibility.

Computation and Communication

In the interests of portability and flexibility, NLOM (like many other domain decom-
position codes) separates computation and communication into distinct phases of the
algorithm (and into distinct subroutines). However, there are cases where overlap of
computation and communication is desirable or even essential. BSPlib and SHMEM
do not allow such overlap at all. MPI-2 put/get is non-blocking, but may be im-
plemented like BSPlib on some machines. There are MPI-1 non-blocking message
passing calls, which certainly reduce overall latency when sending several messages
but may not allow true overlap of communication and computation. In HPF, all
communciation is scheduled by the compiler and overlap of communication and com-
putation is one way for the compiler to achieve good performance but it is largely
outside the programmers control. F-- does not allow overlap except at the level of the
compiler’s scheduling of loads and stores, but it does provide very low latency which
may make algorithms with intermixed communication and computation viable (also
true to a lesser extent for SHMEM and MPI-2 put/get). OpenMP has similar latency
to F--, and threads provide the only guaranteed user-level method to control the
overlap of communication and computation (one thread communicates while another
computes). OpenMP SPMD threads are not the most suitable starting point for this
kind of thread use, but they are probably still easier to use than native threads. A
good example of latency hiding by using threads is SC-MICOM [14], which hides the
communication cost between SMP “boxes” by having more sub-tiles than processors
and doing the sub-tiles near the edge of the tile first and then updating, via MPI-1,
the halos with the other SMP boxes while the interior sub-tiles are calculated. This
is also an example of two level parallelization (threads and MPI-1), which is probably
going to become more common. The combination of OpenMP and MPI-1 provides the
most opertunity for latency hiding, but MPI-2 put/get for near communication and
and MPI-1 message passing for far communication is probably also going to become
VEry common.
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Porting to NLOM '

NLOM was originally designed so that the single source code worked for data parallel
compilers (CM Fortran) and for SPMD message passing. In addition to replacing 2-D
loops with 4-D loops (which can also help in cache reuse), this required 2,600 HPF
DISTRIBUTE directives and 500 HPF INDEPENDENT directives. The directives
are implemented via cpp macros, to allow for machine and compiler specific variations
(e.g. CM Fortran and HPF). The total code is 69,000 lines of Fortran 77 including
22,000 standard comment lines of which 500 are compiler directives (many are repeats
in different dialects). In addition there are another 60,000 lines of comments in a
standard format required for all Navy operational models. The communication API
consists of 32 subroutines, and 10,000 lines of code are used in total to implement the
various versions (autotasking, data parallel, MPI-1, SHMEM). There are 6,500 lines
of code in five versions of 16 machine specific (primarily I/O) routines, and there is
also significant parallel programming model specific, and machine specific, code in the
direct Helmholtz’s equation solver. Overall the single node version of NLOM would
actually use 41,000 lines of code including 15,000 comments.

Adding support for OpenMP required generating 6,500 lines of code for OpenMP
alone, although most of these are identical to the SHMEM version. The shared
parts of the code required 900 OpenMP compiler directives, 500 to characterize all
COMMON’s (could be reduced using INCLUDE) and 400 primarily to handle I/O.
The I/0 logic required other modifications, as outlined in the I/0O section above, so
that all I/O is performed by the master thread only. The OpenMP standard does not
allow SAVE to be used for local variables in a portable program. NLOM already used
named COMMON for most such variables, because of previous portability problems
with local SAVE. However, local variables initialized with a DATA statement are
implicitly saved and several of these had to be removed from NLOM to allow OpenMP
to work.

Adding MPI-2 put/get will formally require modifications to 6,500 lines of code,
but most of these will be identical to the SHMEM version. Only 110 SHMEM GET
calls will need replacing, plus any necessay modifications to the synchronization logic.
Additional macros will be required to allow some subroutines to use MPI-1 and others
to use MPI-2 on a machine by machine basis.

Since NLOM already has an array I/O API that is called collectively by all nodes (9
subroutines, 700 non-comment lines), adding MPI-2 I/O should be straight forward.
For example, adding support for the IBM “Parallel I/O File System” required only
50 additional lines of code.

Test problems

Three NLOM-based benchmarks are used to evaluate performance. Source code is
available at ftp://ftp7320.nrlssc.navy.mil/pub/wobnch.
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HALO

The HALO benchmark simulates a NLOM 2-D “halo” exchange for a N by N sub-
domain with N = 2...1024. There are separate versions for each programming model.
These can be used to compare exchange strategies for a given programming model, or
to intercompare models. HALO puts a premium on low latency, but so does NLOM
as a whole and HALO performance correlates well with overall NLOM communica-
tion performance. Figure 1 shows performance for the best HALO implementation
of several programming model on a range of 16-processor machines. BSPlib is very
slow, apparently because a “superstep” barrier involves three actual barriers. The
best MPI-1 implementation is typically persistent ISEND then IRECV, "and MPI-1
performance is similar on all scalable systems shown. Note that the “shared nothing”

IBM SP does about as well as shared memory systems using MPI-1. Finally, the
1-sided memory methods are fastest (i.e. have the lowest latency) where applicable.
Figure 2 shows 1-sided memory methods in more detail, and illustrates that local
synchronization is faster than global barriers except on the Cray T3E.

RBSOR
| machine library | nodes | RBSOR [ XCTILR | XCNORM [ speedup |
Cray T3E SEMEM | 16 | 4902 | 0.100 0.782 || (450 MHz)
Cray T3E SHMEM 32 2.035 0.077 0.414 2.41 x16
Cray T3E SHMEM 64 1.115 0.067 0.233 1.83 x32
Cray T3E SHMEM 128 0.580 0.046 0.123 1.92 x64
SGI Origin 2000 | SHMEM 16 3.908 0.969 0.769 (195 MHz)
SGI Origin 2000 | SHMEM 28 1.687 0.308 0.366 2.32 x16
SGI Origin 2000 { SHMEM 56 0.924 0.199 0.218 1.83 x28
SGI Origin 2000 | OpenMP | 16 | 2.697 || 0.156 0549 || (195 MHz)
SGI Origin 2000 | OpenMP 28 1.540 0.109 0.477 1.75 x16
SGI Origin 2000 | OpenMP 56 1.061 0.285 0.299 1.45 x28
Sun B10000 Sun MPI | 16 | 8940 | 1.883 1480 || (250 MHz)
Sun E10000 Sun MPI 32 3.873 1.166 0.915 2.31 x16
Sun E10000 Sun MPI 56 1.793 0.504 0.501 2.16 x32
TP SPP.2000 | HP MPI | 16 || 3401 | 0.486 0651 | (180 MHz)
HP SPP-2000 HP MPI 32 1.614 0.212 0.356 2.11 x16
HP SPP-2000 HP MPI 64 0.761 0.153 0.214 2.12 x32
IBM SP IBM MPI 16 2.580 0.227 0.625 (135 MHz)
IBM SP IBM MPI 32 1.562 0.204 0.465 1.65 x16
IBM SP IBM MPI 64 0.955 0.163 0.324 1.64 x32
IBM SP IBM MPI | 128 0.892 0.167 0.411 0.98 x64

Table 1: Time in seconds for 27 2048x1344 Red-Black SOR solves

The RBSOR benchmark is a stand alone test of the red-black SOR iterative solver
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used by NLOM. Three wall clock times are recorded, a) total (RBSOR), b) halo
exchange (XCTILR), and ¢) global sum (XCNORM). This benchmark is much simpler
to get running than the full NLOM code, and it provides some indication of both
computation and communication perforamance on a given machine. However, the
computational kernal of RBSOR is not necessarily representative of NLOM as a whole
(compare table 1, RBSOR, with table 2, NA824). The OpenMP times on a SGI Origin
2000 compare favorably with SHMEM times. The Sun E10000 is showing super-scalar
speedup, but relatively poor computational kernal speed.

NAS824
[ machine method | nodes time Mflop/s speedup ]

Cray T3E-900 SHMEM 14 44.1 mins || 1,064 (450 MHz)

Cray T3E-900 SHMEM | 28 21.0 mins || 2,236 | 2.10x 14 nodes
Cray T3E-900 SHMEM 56 10.2 mins || 4,591 | 2.06x 28 nodes
Cray T3E-900 SHMEM | 112 5.7 mins 8,184 | 1.79x 56 nodes
Cray T3E-900 SHMEM | 224 3.4 mins || 13,601 | 1.68x112 nodes
SGI Origin 2000 | SHMEM 14 75.3 mins 622 (195 MHz)

SGI Origin 2000 | SHMEM 28 31.7 mins || 1,481 | 2.38x 14 nodes
SGI Origin 2000 | SHMEM | 56 15.5 mins || 3,031 | 2.05x 28 nodes
SGI Origin 2000 | SHMEM | 112 | 7.8 mins 6,030 | 1.99x 56 nodes
SGI Origin 2000 | OpenMP | 14 | 96.9 mins 484 (195 MHz)

SGI Origin 2000 | OpenMP | 28 38.0 mins || 1,233 | 2.55x 14 nodes
SGI Origin 2000 | OpenMP | 56 21.1 mins | 2,225 | 1.80x 28 nodes
SGI Origin 2000 | OpenMP | 112 | 12.7 mins | 3,682 | 1.65x 56 nodes
HP SPP-2000 MPI 14 56.3 mins 833 (180 MHz)

HP SPP-2000 MPI 28 25.1 mins 1,868 | 2.24x 14 nodes
HP SPP-2000 MPI 56 15.1 mins || 3,107 | 1.66x 28 nodes
IBM SP MPI 14 39.2 mins | 1,197 (135 MHz)

IBM SP MPI 28 20.0 mins | 2,345 | 1.96x 14 nodes
IBM SP MPI 56 11.2 mins || 4,169 | 1.79x 28 nodes
IBM SP MPI 112 7.7 mins 6,060 | 1.45x 56 nodes
IBM SP MPI 224 5.1 mins 9,208 | 1.51x112 nodes

Table 2: Performance of NLOM (NA824)

The NA824 benchmark is for 3.05 model days on a 1/32 degree 5-layer Atlantic
Subtropical Gyre region (grid size 2048 x 1344 x 5). The run includes all the typical
I/O and data sampling, but it does not measure initialization time (before the first
time step). The sustained Mflops estimate is based on a hardware trace of a single
processor Origin 2000 run (without MADD ops), i.e. is “useful” flops only. Like most
heavily used benchmarks, this is for a problem smaller than those now typically run.
The NA824 speedup from 28 to 56 processors is similar to the 112 to 224 speedup for
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the four times larger 1/64 degree Atlantic model. Illustrating that NLOM is indeed
a “scalable” code. Table 2 summarizes the performance results. Note that for 28
processors and above 1/8th of the tiles are being discarded at compile time because
they are over land, thus the 28 processor wall time is equivalant to a 32 processor wall
time with no discarded tiles. Linear speedup from 14 to 28 processors is not 28/14
but 32/14 (i.e. not 2x but 2.29x). The Cray T3E is showing the best scalability to
large numbers of nodes, but the IBM SP is competative on up to 64 processors. The
SGI Origin 2000 is showing a sustained cache effect, with speedups of two or more
for each doubling of nodes. OpenMP on the Origin is currently slower than SHMEM,
but communication routines perform similarly between the two methods. So OpenMP
compilation is slowing down the compuational kernals. This is a beta compiler and
improvements can be expected in the future. The HP/Convex SPP-2000 is faster
then the SGI Origin 2000 if only about half of the 16 processors in each hypernode
are used (the 14 and 28 processor runs were on 2 and 4 hypernodes respectively).
Like many other SMP systems, the SPP-2000’s memory bandwidth does not sustain
all the supplied processors when running memory bound jobs.

Conclusions

Retrofitting a scalable programming model to an existing scalable ocean code such
as NLOM is not an ideal basis for comparision, even though NLOM is designed
to accept alternative programming models. The separation of communication and
computation phases for much of NLOM, and the fitting of each programming model
into the existing communication API, puts at a disadvantage programming models
that are easy to use and that favor mixing of communication and computation. Even
so, this comparison provides a baseline for performance on an actual application.
Early OpenMP compilers are showing promise, but MPI-2 put/get will probably be
most programmers first exposure to 1-sided communication. We must hope that
MPI-2 implementations will approach the performance of SHMEM and OpenMP.
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Abstract: In this extended abstract we describe a programming model for parallel ocean
circulation codes. We have applied this model to the Miami Isopycnic Coordinate Ocean
Model (MICOM) and are in the process of applying it to the Princeton Ocean Model
(POM). The model exploits highly parallel machines that have memory and network
hierarchies to achieve scalable, efficient performance combined with ease of
programming.
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Introduction

Since the early 1980's, the growth of the computing speed of the largest supercomputers
has been dramatically increased through the use of parallel processing. As a result of this
increase in computing power, many fields have replaced physical experiments and tests
with computer simulation and modeling. This is certainly true in ocean circulation and in
climate research. However, it can be difficult to develop applications that run efficiently
on supercomputers with hundreds or thousands of processors.

Several approaches have been taken to the difficult task of writing parallel programs.
From the programmer's perspective, the easiest method might be to use a parallel
language such as High Performance Fortran (HPF) that supports array parallelism. In
parallel languages like HPF, the programmer has a global view of the data being
manipulated and the compiler assumes responsibility for distributing the data and work
across a parallel machine. Shared-memory paralle]l programming using compiler
directives such as the new OpenMP standard is becoming more widely used for smaller
numbers of processors. However, direct shared-memory programming relies on efficient
shared-memory support from the underlying hardware. Thus it is not directly applicable
to clustered machines or very large systems such as the Cray T3E and IBM SP/2 that do
not have the necessary level of shared-memory support. The other common method of
creating parallel programs is to write a message-passing program. With this method, the
programmer is required to write a program from the perspective of a processor in a
parallel machine, explicitly specifying when the processor should send or receive
messages to and from its neighbors. If written correctly, message-passing parallel
programs are efficient and achieve high performance; however, they can also be difficult
to write and debug.

Standards such as HPF have created languages that can be used to write parallel
programs. Unfortunately, these languages often demand too much of the compiler.
Because of the amount of information a HPF compiler must discover through analysis to
produce an efficient parallel program, the compilers end up either producing low
execution performance or being very complex. Compiler complexity can lead to
incomplete implementation of features deemed less important by the compiler
developers, larger numbers of compiler bugs, and excessively long compile times.

An easier solution that works for many problem areas is for the programmer to write
codes that conform to a specific coding style. This enables us to apply straightforward
compiler analysis to automate some of the difficult tasks required to produce a parallel
program. In addition, we can make some useful assumptions about the code because of
the guidelines the programmer has agreed to follow. These assumptions would be
difficult to validate in an arbitrary program, even if advanced compiler analysis
techniques were used. It is also possible that a programmer unaware of these
assumptions would inadvertently violate them. We have used a specific coding style we
call self-similar programming to accomplish this; this style is particularly applicable to
applications in ocean circulation.
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Self-Similar Programming

Our goal is to make it easier for programmers to write parallel programs that have
properties that will enable them to run well on parallel supercomputers:

* The fraction of the program that must be executed by a single processor or thread
of control should be very small.

* The communication patterns of the program should map well to the
interconnection network of the underlying hardware.

* The parallel work should be as coarse-grained as possible; that is, there should be
as much work between synchronizations as possible.

We accomplish this goal by providing the programmer with two complementary pieces.
The first piece is the self-similar programming model, which we believe leads to
programs that have all of the properties listed above . The second piece is a powerful
data-flow analysis tool designed to help the programmer with the problems that arise in
writing self-similar parallel programs [4].

Our approach is a middle ground between writing programs in a new parallel language
like HPF and applying a sophisticated parallelizing compiler to existing code. Both of
these approaches are more general than ours but each also has its limitations. For
example, some programs (including some self-similar programs) cannot be fully analyzed
by parallelizing compilers because they use programming techniques that can only be
analyzed with the use of data available when the program is running. However, a good
parallelizing compiler should be be able to produce efficient code from a self-similar
parallel program if it can avoid excessive synchronization between parallel loop nests.
Unfortunately, it appears that current commercial parallelizing compilers are not able to
avoid synchronizing after every parallel loop nest.

Our programming model applies to programs that have the self-similarity property,
though not all dimensions or axes of the program are required to have this property. The
program dimensions that are self-similar have the following characteristics:

* Loops along the dimension span the entire length of the dimension. In other
words, if a dimension of the arrays in the program is declared to contain elements
I to N, then loops that index that dimension should run from I to N as well.

e When the program is computing new values for index i of a dimension, it may use
other elements from indices i+d of that dimension. The value of |dl must have an
upper bound b such that b <<N, where N is the length of the dimension.
Because of this characteristic, data use along each self-similar dimension must be
local.

* The elements along the dimension can be computed in any order. There are no
inter-iteration dependences in loops along the dimension.
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Each dimension of the program which is self-similar is called a parallel dimension, and
the dimensions that are not self-similar are called serial dimensions. Loops that index a
parallel dimension are called parallel loops. The loops that do not index a parallel
dimension are called non-parallel or serial loops. A self-similar code can be represented
as a mathematical operator F that produces a new state at point p from the old values at p
and neighbors of p:

Priv1 = F(pr=ir neighbors(pr=i ))

A more general definition of a self-similar algorithm is that the same algorithm used for
updating the entire problem domain can be used to update any subsection of the domain
without altering anything other than loop bounds, array bounds, and boundary conditions.
This is the origin of the term in this context; the algorithm for a large domain is the same
as the algorithm for a small domain, which is analogous to the way fractal structures have
the same characteristics when observed at a variety of different length scales. Both these
definitions hold for many ocean circulation codes, which use regular, finite-difference
numerical techniques in the horizontal (parallel) dimensions. The vertical dimension is
most often serial.

Applications

The Miami Isopycnic-Coordinate Ocean Model (MICOM) [1] has been our primary test
case for self-similar parallel programming using overlap areas. MICOM models the
circulation of water in the ocean. This circulation is driven by density differences within
the ocean and by interaction with the atmosphere at the surface. Evaporation, which is
affected by water temperature and air humidity, and precipitation determine whether
there is a net loss or gain of water at the surface. Wind both adds horizontal momentum
to the surface waters and adds turbulence, which affects the depth to which water is
mixed vertically. The difference between water and air temperature also affects vertical
mixing. When the air is colder than the water, it cools the water and causes vertical
mixing due to convection. Except for the vertical mixing that takes place near the surface,
there is very little vertical mixing within the ocean. Water masses with different densities
remain segregated and do not mix.

In order to capture this segregation of water by density within the ocean, MICOM treats
the ocean as a stack of variable-thickness layers. The topmost layer, known as the mixed
layer, has a variable density and represents the layer that is vertically mixed due to its
interaction with the atmosphere. The layers below the mixed layer are assigned fixed
densities, which increase with increasing depth. The term isopycnic used in the name of
the model refers to this constant-density treatment.
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Because the heat capacity of the ocean is several orders of magnitude larger than that of
the atmosphere, accurate heat transport within the ocean is important for long-term
climate simulations. The density-based vertical coordinate used in MICOM is one way to
achieve this by avoiding artificial mixing of water with different densities within the
ocean model.

The equation of state of salt water, which determines density as a function of temperature
and level of salinity, can be solved for temperature as a function of salinity and density.
This allows MICOM to store only the salinity of the water at each point of each internal
ocean layer; when temperature is desired, it can be computed from the equation of state
given the density and salinity. The densities of the internal layers of ocean in MICOM are
fixed parameters; they are set by the user at the beginning of a simulation.

MICOM uses finite-difference approximations to solve differential equations describing
the motion of water within each horizontal layer. Two sizes of time step are used to time-
integrate MICOM's state. The main time step is used to integrate the equations describing
the behavior of each element of each of the horizontal layers. However, barotropic
gravity waves, which affect all of the layers, propagate many times faster than any other
signal in the model. To improve computational efficiency, this barotropic signal is
subtracted out, propagated for many small time steps with a single-layer model, and then
added back into the multi-layer model. The ratio between the barotropic timestep and the
main timestep is approximately 20:1.

Figure 1: Domain decomposition of the Baltic Sea with land subdomains removed.
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In Figure 1 we show a domain decomposition over the Baltic Sea. Note that subdomains
in the partitioning that contain no water (dark grey in the figure) are not included in the
parallel calculation, improving efficiency and reducing memory {31
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Figure 2: The performance of the parallel MICOM and MICOM 2.6 using loop-level
parallelism in timesteps per minute for an 800x800 problem size on an SGI Origin2000.

In Figure 2 we show the scaling achieved for the parallel self-similar MICOM. This code
was parallelized manually but later analyzed using our compiler tool TOPAZ [4] to
determine the extent of the overlap regions required for parallel execution. The self-
similar parallel MICOM scales super-linearly to 64 processor on the Origin2000. In
contrast, the loop-level parallel code generated automatically using the SGI optimizing
parallel Fortran compiler has limited scalability past 4 processors. This is due primarily
to the order-of-magnitude increase in the number of barrier synchronizations required
and in the reduced locality of this code.

Our current work includes applying our compiler tool TOPAZ to analyze and parallelize
the Princeton Ocean Model (POM) [2]. We intend to reuse much of the parallel code
infrastructure constructed for the MICOM effort. In addition we continue to perform
scaling and performance testing of the MICOM code on highly parallel MPPs, DSMs,
and clusters to better understand limits to its performance and scalability.
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Optimizing POP for a Cache Based Architecture

Today the major computational resources for the scientific community are cache based processors with high
megahertz rates and multiple functions units, their Macho flop numbers approach a Gigaflop for a single processor.
When researchers port their application to these systems they see anywhere from 4 to 100 MFLOPS. The cause for
this lower flop rate is the utilization of the cache on the microprocessor. Given a very high megahertz rate the
memory cannot keep up with the processor and the cache is placed between memory and the CPU to provide higher
memory bandwidth. This high memory bandwidth is only achieved when all of the cache line fetched to the cache is

used.

The Parallel Ocean Program (POP) was developed for the CM5 and MPP's in Fortran 90. When first ported to the
SGI - Origin it achieved a maximum of 30-40 MFLOPS on a single processor. Over the past six months the
performance of POP has been increased to over 100 MFLOPS per node. In order to achieve this increase in
performance cache utilization was increased to the point that there are no cache misses other than those from the
first fetch of a line into cache.

In the process of optimizing POP we developed a strategy and used tools that can be applied to other applications.
The approach was to map out the computational arrays in the cache for the major looping structures. The layout of
the initial POP program resulted in significant level 1 and 2 cache misses due to the two way associative cache. We
found that re-mapping the arrays to eliminate these misses was facilitated by moving the depth dimension of the
arrays to the first index. This also necessitated that the K (depth) loop become the inner loop for the computation.
The cache mapping was performed using a cache analysis tool named CacheVU.

The study found that the F90 array syntax was not conducive to cache re-use and that the F90 program used many
temporary arrays that hurt cache utilization. The solution to this problem, given that the POP developer desired to
program in F90 array syntax was to translate the F90 to F77 using a pre-processor called zAPR. The details of the
ZAPR translation were formulated during the POP analysis. Cooperation between the tool developers and the POP
developers has resulted in a F90 programming style that can be efficiently translated into optimal code.

This paper is the result of a collaboration between Christopher Kerr, Bob Malone and John Levesque.
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Abstract

The efficiency of explicit time integration schemes for barotropic models of
the Mediterranean were investigated, in context of the vectorization and parallel
modeling approaches employed on different architectures. The main focus of
interest was the scalability and MFlops output of the codes as a function of
domain size.

For simulations with real winds, mesh sizes ranged from 25 km down to 1.8
km (grids of 180x64 to 2048x1024), with the coarse resolution resolving only
major straits like that of Sicily, and the high resolution even narrow straits
like Gibraltar and Messina. Since the memory requirement of these grids only
ranged to 70 Mbytes, we also performed simulations with idealized, precom-
puted winds for which mesh sizes ranged down to 280m, to produce a total
memory requirement of 4 Gbytes. The analysis and interpretation of the latter
results for the Mediterranean has not been performed yet. The explicit scheme
consisted of the leap-frog scheme for the Coriolis, pressure gradient and advec-
tion terms, and ’lagged’ times for the diffusion terms. The platforms utilized
included the CM500-E (with CMF), the Cray C90 and T90 (with FT90 -O3
auto-tasking), the Cray T3E (with HPF and MPI), the SGI Origin2000 (with
f77 -pfa -O2 power fortran,HPF and MPI), the IBM SP2 (with HPF) and the
Sun Global Works (with HPF).

The MPI version of this code employed a 2-D tiling decomposition, and
paralle] runs were performed up to 512 processors on the T3E and up to 64
processors on the SGI Origin. The T3E 512 processors achieved an 82 %
scaling efficiency relative to 32 CPU’s. The SGI 64 processors achieved a scaling
efficiency of 100 % vs. 32 processors, but less than linear for smaller number
of processors. The auto-tasking versions were quite efficient even for small
program sizes (17 Mb) and for small number of processors, with the SGI -pfa
compiler option (with -O2 optimization) giving scalings of 1.9, 3.7, and 15.4 for

209



2, 4 and 16 CPU's, respectively, while the Cray T90 -O3 option (with FT90)
gave scalings of 3.6 and 6.6 for 4 and 8 processors, respectively.

indent MFlops output reached 11.7 GFlops for the 512 node T3E, and 7.4
GFlops for the 128 node O2K.

1 Introduction

The recent advances in high-performance computing, especially on massively- parallel
machines, have encompassed ocean models as well. These advances also include the
reformulation and design of numerical schemes especially suited for parallel machines.
On the one hand, progress has been achieved by porting older codes to new architec-
tures; on the other hand, some codes have been designed from scratch for the new
machines. In the 1992-1998 period at the Naval Research Laboratory, great advances
were made in ocean modeling on a series of parallel computers. The principal machine
used up-to-now by the group was the CM5-E, with 256 nodes and a total memory of
4 Gigawords; currently they are the Cray T3E, with 512 nodes and a total memory
of 128 GB, and the SGI Origin2000, with 128 processors and 32 GB of memory.

The large memory and throughput of these machines enabled us to push the frontiers
of ocean modeling much further, solving some problems important for Navy environ-
mental prediction and climate simulation. Among these were the simulation of the
reapparance of the 1983 El Nino 8 years later in the western Pacific, having traced
the westward propagation of the constituent Rossby waves with sufficient spatial res-
olution and phase accuracy [Jacobs et al,1994]. The crucial factor in ocean modeling
has always been resolution, both in the horizontal and vertical. High resolution re-
duces truncation and dispersion errors; in addition, it allows the size of the friction
coefficient to be kept small, increasing the amplitudes of the ocean currents. A fur-
ther advantage is the better resolution of gradients and the decrease in eddy sizes
that can be resolved, extending the solution spectrum and energy cascade, crucial for
long term simulations. A large part of the lateral friction employed in ocean models
is necessary for numerical rather than physical reasons, to keep solutions stable and
smooth.

There appeared to be two problems in the beginning of our parallel computations that
had to be tackled: (a) how to migrate existing ocean models from a shared memory
to a distributed memory computer; (b) a rethinking of the numerical techniques
and algorithmic approaches to take advantage of the massively parallel nature of
the new computers. On data-parallel machines, such as the CM5, this migration
required a complete rewrite of the existing model codes into CM Fortran (CMF).
On distributed memory machines, the use of HPF (High Performance Fortran) was
facilitated by the existing CMF codes, from which HPF codes could be generated in
about a week or two. Some of the large 3-D codes were ported directly from the Cray
C90 to the T3D and T3E via message-passing: this typically involved inserting MPI
message-passing function calls into regular f77 subroutines. On massively parallel
machines, such things as communicating between neighboring grid points are major
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issues, and the problem revolves around a trade-off between keeping all processors
busy (”load balancing”) versus keeping communication down between processors as
much as possible (”locality management”). Furthermore, certain numerical schemes
that rely on recursion relations (e.g. the well-known tridiagonal algorithm) encounter
the same problems of conflict and inefficiency on parallel machines as they do on vector
machines. Thus alternate formulations for inverting tridiagonal matrices (e.g. the
Buzbee-Golub cyclic reduction technique [Buzbee et al,1971; Schwarztrauber,1977])
had to be invoked.

For the major part of the ocean modeling subroutines, it was relatively easy to rewrite
the existing codes; however, certain Helmholtz solvers required major recoding efforts
to arrive at an efficient program representation (Wallcraft and Moore, 1997). One
problem we found with parallel computers is that performance on certain codes was
degraded by necessary actions that are required at only a small number of grid points
(e.g. the computation of boundary conditions), since all other processors are idle
while these actions are performed.

For a review of some recent efforts in parallelizing ocean models, the reader is referred
to Smith et al (1992), Dukowicz et al (1993), Piacsek and Wallcraft (1993), Bleck et
al (1995), Webb (1995), Oberhuber and Ketelsen (1995), Wallcraft and Moore (1997)
and Ma et al (1998).

The present report will focus on barotropic ocean models that employ explicit time
integration, and do not require the use of a Helmholtz solver. In Section 1 we in-
troduce barotropic models and give will a rationale for their use. In Section 2 we
will give model details, including the numerical scheme for the explicit time stepping
version, and some sample results in the Mediterranean. In Section 3 we present some
performance figures on various parallel platforms.

2 Barotropic Models

2.1 Utility of Barotropic Models

Barotropic ocean models are 2-D and represent the ocean with one deformable layer,
obtained upon integrating vertically the 3-D equations of a hydrostatic ocean. They
include topography of the ocean bottom and (generally) a uniform density. All 3-D
ocean models contain a barotropic mode (i.e. the vertically averaged motion). For a
discussion of these topics, the readers are referred to Bryan,1969,1979; Madala and Pi-
acsek,1977; Blumberg and Mellor,1987; Wallcraft,1991 and Dukowicz and Smith,1994.

It may be asked why barotropic modelling is done at all except in conjunction with
baroclinic modelling? We can give three reasons immediately:

(a) in certain oceanic regions, especially in the winter season, deep convective mixing
can occur which will tend to homogenize the density field over most of the depth range,
so that the barotropic part may represent a significant if not the dominant component
of the total circulation. Thus we can gain a useful insight into its patterns by using
only a barotropic model, at a much lower computational cost.
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(b) tidal forces create the greatest response in the barotropic mode, and their response
must be modeled in shallow waters. :

(c) The third, and probably most important, point is that the free surface elevation
couples directly to the barotropic mode. The associated surface gravity waves, with
their fast propagation velocities, can cause great problems for the numerical compu-
tations. For various numerical and computational reasons, this makes the solution
of the barotropic equations the most CPU intensive, and hence expensive. Hence
it becomes very cost-effective to study the efficiency and accuracy of the numerical
techniques on parallel platforms in the 2-D setting of barotropic models, rather than
in a costly 3-D baroclinic setting.

(d) The central role of the free surface in barotropic models becomes even more
important when altimeter measurements of the sea surface elevation are used as part
of the initialization /updating procedure for real-time prediction. This is because the
information about the free surface elavation is first passed through the barotropic
mode before its pressure effects are felt by the whole water column. Thus barotropic
models are used to estimate the atmospheric-pressure induced sea surface elevations,
not only the simple inverse barometer effect, but the so-called 'non-isostatic’ response
due to moving weather patterns. Both this 'non-isostatic’ response, and the surface
elevations due to tidal forcing, are needed to calibrate altimeter measurements of sea
surface height [Kantha, 1995].

2.2 Model Equations for a Barotropic Ocean

To shorten and simplify the numerical description, we will present only the finite
difference form of the relevant equations in Cartesian coordinates, using constant
horizontal friction coeficients; extension to spherical geometry and variable friction
coefficients is straightforward. We further assume a constant density, and that the
ocean depth is much greater than the free surface elevation, so that only a linear
form of the continuity equation needs to be utilized. In the same vein, because of the
smallnes of barotropic currents in deep water, we omit the nonlinear advection terms
in this description, though they were included in the code and the simulations.

We will use the nonlinear bottom friction formulation (6), and locate the variables
on a staggered mesh called the Arakawa C-grid [Wallcaft,1991]. In this arrangement
the pressure p and height h variables are located at the center of the mesh boxes, and
the mass tansports U and V at the center of the box boundaries facing the z and y
directions, respectively.

U;n&l _ Uin_-l n H n
__J_At—J_ = fVlJ — %;(hi-i-l/?j - h‘i—l/Zj)
+’A?(Ui+1j + Uintj + Uijr + Uijor — 4U5)™
+(r2)s = Cal5 ™ M
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where

U= (U, V) - mass transports in the x- and y-directions, respectively
Tw = [(Tw)z, (Tw)y] - wind stress components

75 = [(76)zs (75)y) - bottom stress components

h - free surface elevation

f =28 sin @ - Coriolis parameter for latitude

H(z,y) - topography (ocean depth)

A - coefficient of lateral friction

‘The bottom stress Ty can be related in a linear or nonlinear way to the bottom velocity,
which in this case has to be replaced by the depth-mean averaged velocity.

The use of a lateral friction coefficient is a general requirement for modeling all
hydrodynamic processes that have strong nonlinearities, and as such it becomes a
necessary part of ocean models as well. Such friction is also necessary for physical
reasons, to represent the subgrid-scale mixing processes.

We assume closed boundaries for our rectangular domain, for which the relevant
conditions are U = V = 0. Note that the vanishing of the depth H on land precludes
having to specify the gradients of h, and no loss of parallel efficiency will occur.

2.3 Explicit Time Integration

Explicit time integration schemes are attractive because they do not involve matrix
inversion or the use of iterative solvers. Though we avoid having to use a matrix
inverter to solve for the values at t"*!, we pay the price by being restricted in the
time step we can take. The size of the time step one can march with is governed by the
well-known Courant-Friedrichs-Levy (CFL) stability condition. For wave equations
the time step is limited by the wave speed, in this case the speed of the surface gravity
waves ¢, and is given by

At < Az/e, (4)

213



Typically, ¢, = ¥/gH of the gravity waves exceeds 200m/sec in basins of depth
> 4000m, so At is of order 60 sec for a spatial resolution of 14 km normally associated
with eddy-resolving basin-scale (1/8 deg) ocean models.

We must also give expressions for the bottom stress 7, in terms of the velocity com-
ponents. In the non-linear approach, the bottom stress takes the form

Thzs = Cd|U|Uv Toy = CdIU|V (5)

with the value of the drag coefficient Cy taken to be either .0025 or .0050, depending
on the author.

2.4 Barotropic Results in the Mediterranean

We have found that for this simple 2-D explicit code there were no impediments
to either vectorization or parallelization. Our first parallel experiments were on the
CM5. After the basic conversion from f77 to CMF, including calls to MAXVAL,
SUM, etc., an attempt was made to speed up the code by studying serializing or
parallelizing the different spatial dimensions, the size of these dimensions, and the
handling of the boundary conditions. These have been reported on in Piacsek and
Wallcraft (1993).

Using the CM5 code, we carried out simulations of the wind-driven circulation in the
Mediterranean, including the non-isostatic response to moving atmospheric pressure
gradients. For simulations with real winds on all platforms, mesh sizes ranged from
95 km down to 1.8 km (grids of 180x64 to 2048x1024), with the coarse resolution
resolving only major straits like that of Sicily, and the high resolution even narrow
straits like Gibraltar and Messina. Since the parallel versions of the wind interpo-
lation routines have not yet been installed, and 6-hourly forcing at the very high
resolution presented a forbidding amount of data transfer and storage, we ran the
higher resolution cases only with analytic winds.

The model grid for the experiments presented here was 1024x512, giving a horizontal
grid size of 3.5 km. The experiments were carried out on the 256-cpu CM500-E at
NRL-DC, as well as on the various partitions of the CM5 at Minnesota (it ran even on
the 64-cpu partitions). The horizontal diffusivity A was taken to be 50 m?/sec. The
model was forced with GCM-derived synoptic winds obtained from central weather
prediction sites, and run typically for 60 days to equilibrium.

Figure 1 shows the transport vectors for the barotropic circulation in the Tyrrhenian
Sea for the month of November 1994, The development of a strong cyclonic gyre in
the southern half of the basin as winter approaches is quite evident.

Figure 2 shows the transport vectors for the barotropic circulation in the NE corner
of the Eastern Mediterranean Basin for the four seasons of 1994. The strong effect
of the topography, the so-called 'topographic steering’ of the barotropic currents, is
quite evident. The well-known, intense cyclonic gyre near the island of Rhodos (the
"Rhodes gyre’) is well represented with only the barotropic mode, as is the westward
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moving Anatolian current south of Turkey. The main seasonal changes appear to be
the appearance of an anticyclonic gyre east of the Rhodes Gyre, and the tendency of
the Rhodes Gyre to become an asymmetric bi-polar vortex pair, in the winter months.

3 MPI Version of Barotropic Code

The MPI version of this code employed a 2-D tiling decomposition, and parallel runs
were performed up to 512 processors on the T3E and up to 64 processors on the SGI
Origin. Since the memory requirement of the grids for the GCM wind simulations
ranged to 70 Mbytes, we also performed simulations with idealized, precomputed
winds for which mesh sizes ranged down to 280m, to produce a total memory re-
quirement of 4 Gbytes. The analysis and interpretation of the latter results for the
Mediterranean has not been performed yet.

In our initial phase of code development, we have used blocking send and receive
calls. All processors were sending messages in parallel, but there was no overlap with
any computations. The code sections shown below are not complete, citing only the
statements relevant to illustrating the MPI approach. In the same vein, the number
of processors and mesh dimensions are only illustration.

3.1 MPI Initialization

PROGRAM BTPROGRAM_MPI
include "mpif.h"

C
parameter (nprocx = 8,nprocy=8)
PARAMETER (NX=2049,NY=1025)
parameter (MyNX=((NX-2) /nprocx)+2)
parameter (MyNY=((NY-2) /nprocy)+2)
C
common /nil/ comm_2d, coords, left, right, above, down
common /n2/ strided
C
integer rank, size, ierr
integer comm_2d, coords(2), left, right, above, down
integer strided
logical shift_up, shift_down, shift_left, shift_right
C

3.2 The Forecast Routine for the X-Transport U
SUBROUTINE FCST_UVH

integer left,right,above,down, coords(2),comm_2d,strided
integer nprocx, nprocy,IS,JS
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logical shift_up, shift_down, shift_left, shift_right
common /nl/ comm_2d, coords, left, right, above, down
common /n2/ strided

shift_up = .true.

shift_down .true.
shift_left .true.
shift_right = .true.

Js =2
if (coords(2) .eq. 0) JS =1
Is = 2

if(coords(1) .eq. 0) IS
DO 100 J = JS,JJ1
DO 100 I = IS,IIt
uu(I,n U(1,J)
vv(1,J) = V(I,7)
UVEL(I,J) = ZU(I,J)/HT(I,])

n
[N

VVEL(I,J) = ZV(I,J)/HT(1,J)
100 CONTINUE
C
call shift_data(ZH,mynx,myny,
& .false., .false., shift_left, .false.)
call shift_data(UU,mynx,myny,
gshift_up, shift_down, shift_left, shift_right)
call shift_data(UVEL,mynx,myny,
& shift_up, shift_down, shift_left, shift_right)
call shift_data(ZU,mynx,myny,
& .false., .false.,shift_left,shift_right)
call shift_data(VP,mynx,myny,
& shift_up, .false., .false., .false.)
IL = II1
if(coords(1) .eq. mprocx-1) IL = II2
C
DD 200 J = 2,1J1
DO 200 I = 2,IL
IF (MASKU(I,J).NE. O)THEN
U(1,J) = U(1,D
1 + A2(1,J) *Zv(1,J)
C 1 + A24(I,J)*(ZV(I+1,J)+ZV(I+1,J—1)+ZV(I,J+1)+ZV(I,J))
2 - A31(I,1)*(ZH(I+1,]) - ZH(I,J))
C 2 + A33(I,))*(HA(I+1,]) - HA(I,J))
3 + A41 *(UU(I+1,J) + UU(I-1,]) - 2.%UU(1,J))
4 + A42 *(UU(T,J+1) + UU(I,J-1) - 2.*%UU(I,]))
5 + A5*(TAUX(I,J) - TAUBX(I,J)) - A6x%UU(I,J)
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- A71%((ZU(I+1,J)+ZU(I,J))*UVEL(I+1,J)
- (2u(1,3)+2U(I-1,3))*UVEL(I~-1,J))
- A72x (VP(I,J) *UVEL(I, J+1)
- VP(I,J-1) *UVEL(I,J-1))

O 00 N

ENDIF
200 CONTINUE
C

The data shift routines are then called from the subroutine detailed in the next
section.

3.3 The Data Shift Routine

subroutine shift_data(psi,mynx,myny,
& shift_up, shift_down, shift_left, shift_right)

include "mpif.h"

integer mynx, myny

real psi(mynx,myny)

integer i,j,left, right, down, above, comm_2d,strided
integer ierr, coords(2), stat(MPI_STATUS_SIZE)
logical shift_up, shift_down, shift_left, shift_right
common /nl/ comm_2d,coords,left,right,above,down
common /n2/strided

if (shift_up) then
call mpi_send(psi(1,myny-1),mynx,MPI_REAL,above,0,

& comm_2d,ierr)
call mpi_recv(psi(1,1) ,mynx,MPI_REAL,down,O,

& comm_2d, stat, ierr)
endif

if (shift_down) then
call mpi_send(psi(1,2),mynx,MPI_REAL,down,1,

& comm_2d, ierr)

call mpi_recv(psi(1,myny) ,mynx,MPI_REAL,above,1,
& comm_2d,stat, ierr)

endif

if (shift_right) then
call mpi_send(psi(mynx-1,1), 1, strided, right,2,

& comm_2d, ierr)
call mpi_recv(psi(1,1), 1, strided, left, 2,

& comm_2d, stat, ierr)
endif
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if (shift_left) then
call mpi_send(psi(2,1), 1, strided, left, 3,

& comm_2d, ierr)
call mpi_recv(psi(mynx,1), 1, strided, right,3,
& comm_2d, stat, ierr)
endif
return
end

3.4 Performance Figures on Parallel Platforms

The platforms utilized included the CM5-E (with CMF), the Cray C90 and T90 (with
-03 auto-tasking), the Cray T3E (with HPF and MPI), the SGI Origin2000 (with pfa,
HPF and MPI), the IBM SP2 (with HPF) and the Sun Global Works (with HPF).
The MPI version of this code employed a 2-D tiling decomposition, and parallel runs
were performed up to 512 processors on the T3E, up to 64 processors on the SGI
Origin, and up to 64 on the Sun clusters.

indent Figure 3 shows the scalability of the code relative to multiples of 4 CPUs.
The T3E with 64 processors achieved an 98 % scaling efficiency relative to 4 CPU’s;
we found that poor single PE performance held the overall speed down. For 512
processors, the scaling relative to 32 CPUs was 82 %. The Sun systems scaled well,
with a 95 % efficiency, up to 32 CPUs, but then their scalability declined sharply.
The SGI 02K with 32 processors showed only a 75 % scaling efficiency, but this
improved to 84 % with 56 processors. With the O2K, the beneficial cache effects
were pronounced with increasing CPUs.

Figure 4 depicts the total MFlops output of the various platforms as a function of
CPUS and problem size. For the 2 GB problem size, the O2K efficiency with 64
CPUs is almost 100 % vs. 32 processors, but less than linear for a smaller number.
The MFlop output for 56 processors was 3230. For the O2K, the MFlop output for
the 4 GB problem size was slightly higher than for the 2 GB size with 16 CPUs; the
4 GB problem has not yet been tested for larger number of processors. We note that
the 32 processor MFlop output for the T3E isonly a half of the O2K for 4 GB, but
then it scales well up to 64 CPUs.

The auto-tasking versions were quite efficient even for small program sizes (17 Mb)
and for small number of processors, with the SGI -pfa compiler option (with -O2
optimization) giving scalings of 1.9, 3.7, and 15.4 for 2, 4 and 16 CPU’s, respectively,
while the Cray T90 -O3 option (with FT90) gave scalings of 3.6 and 6.6 for 4 and 8
processors, respectively.
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Figure 1: The barotropic circulation in the Tyrrhenian Sea, for the month November

1994.
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Figure 2: Seasonal evolution of the barotropic circulation in the NE quadrant of the

Eastern Mediterranean, for 1994.
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Parallel Performance of a 3D Spectral Element Ocean Model

In the present work, we investigate the scalability and parallel performance of a new three-dimensional spectral
element ocean model. This new model solves the hydrostatic and Boussinesq primitive equations. It features a
spectral element discretization in all three space dimensions with an unstructured grid in the horizontal, and a
terrain-following structured discretization in the vertical direction. The computational tasks in the new model
consist of time-integrating the barotropic component of the flow, calculating the three-dimensional tendencies,
solving the implicit system of equations, and updating the diagnostic variables of pressure, density and vertical
velocity. Here, we present our parallel implementation of the above tasks. We also present our analysis of several
numerical experiment in order to identify the break-down of the computational cost among the tasks listed above.
The numerical experiments also serve to illustrate the scalability and performance of the model in a typical basin-
scale oceanic simulation.

225



226



MASSIVELY PARALLEL IMPLEMENTATION OF A
HIGH ORDER DOMAIN DECOMPOSITION
EQUATORIAL OCEAN MODEL
Hong Ma

Brookhaven National Laboratory, Upton, NY 11973
hm@bnl.gov 516 344-4138

Joseph W. McCaffrey Steve Piacsek
Naval Research Laboratory, Stennis Space Center, MS 39529
mccaffrey@nrlssc.navy.mil piacsek@nrlssc.navy.mil
601 688-5053 601 688-5316

Abstract

The present work is about the algorithms and parallel constructs of a spectral ele-
ment equatorial ocean model. It shows that high order domain decomposition ocean
models can be efficiently implemented on massively parallel architectures, such as
the Connection Machine Model CM5. The optimized computational efficiency of the
parallel spectral element ocean model comes not only from the exponential conver-
gence of the numerical solution, but also from the work-intensive, medium-grained,
geometry-based data parallelism. The data parallelism is created to efficiently imple-
ment the spectral element ocean model on the distributed-memory massively parallel
computer, which minimizes communication among processing nodes. Computational
complexity analysis is given for the parallel algorithm of the spectral element ocean
model, and the model’s parallel performance on the CM5 is evaluated. Lastly, re-
sults from a simulation of wind-driven circulation in low-latitude Atlantic ocean are
described.

1 Introduction

The spectral element method is a combination of both the spectral and the finite
element methods. The spectral element method is also called the “p-type finite ele-
ment” method, or the h-p type weighted residual method. Like the spectral method,
it uses high order polynomials as trial functions, but like the finite element method,
it decomposes the computational domain into many elements and defines local trial
functions. The hybrid character of the spectral element method enables it to over-
come the shortcomings of both the spectral method and the finite element method but
still retain their advantages. Since the trial functions of the spectral element method
are local, it can handle complex geometry easily. On the other hand, it is still a high
order weighted residual method, so the exponential convergence rate is achieved as
the degree of the polynomials in each element is increased. The main difference be-
tween the spectral element method and the spectral multi-domain method is that the
C? and C! boundary conditions at the interface of the elements have to be explicitly
enforced by the spectral multi-domain method. The spectral element method, by con-
trast, uses the variational principle to guarantee C° and C! (weakly) continuity at the
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interface, which results in a much simpler and more natural approach than the nonva-
riational method; therefore, parallel algorithms can be conveniently implemented. In
the past decade or so, research on the spectral element method has made important
progress in perfecting this state-of-the-art numerical method [4,13,14]. More recently,
the spectral element method has shown encouraging potential in oceanic applications
[5,6,7,8,9,10,11).

The present work is about the implementation and results of a massively parallel,
spectral element, high-resolution, three-dimensional equatorial ocean model which,
in particular, is capable of resolving both the horizontal and the vertical structures
of the low-latitude western boundary processes. The current version of the model is
driven solely by wind stress and ignores the dynamical effects of stratification. This
model is designed to study the effect of wind in the formation and variation of impor-
tant meso-to-small scale equatorial ocean phenomenon, such as eddies, low-latitude
western boundary currents, and vertically alternating equatorial zonal jets. The high
efficiency of this model is based on an optimized coupling between the numerical al-
gorithm and the computer architecture (algorithm-architecture). In addition to its
exponential convergence rate, the model’s performance is further enhanced by the
spectral element tensor-product factorization and spectral element parallelism.

2 Governing Equations

The model equations include three dimensional time dependent primitive equations
with hydrostatic approximation [1]. The vertical Coriolis force term in the zonal
momentum equation, which is usually omitted in general circulation models, is kept
for the reason that it could become important at the equator.

S~ (204 (v sing ~ v cosg) =

L5 + Aabut 4,5 202 Ty 1)
Z—:+%+(2Q+ . :03¢)u-sin¢=

—%;g—g +AHAv+AuT1—2%(T2§;)U (2)
_%%:i —g=0 (3)
T- iosqbg% t clos¢ = ;ﬁosw " %’? =° @
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d 0 u & v 0

E_E-*'r-cosd)_(?_)\_*-;—az Yar
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and A is longitude, ¢ latitude, and r radial distance; u, v, and w are the velocity
components in the A, ¢, and r directions, respectively; p is the pressure term. Ay
and A, are the eddy viscosity coefficients in the horizontal and vertical directions,
respectively.

0
(COS¢%) (6)

For convenience, the original spherical coordinates (A, ¢,r) are mapped onto another
coordinates system (z,y, z), and relationship between these two coordinate systems
is defined as:

T = T19C0S¢} (7)
Y = 1o (8)
Zz=1-—r19 9)

where rg is the radial distance of the sea level.

No-normal flow, no-slide boundary conditions are applied to all lateral boundaries
and to the ocean floor. At the sea-surface, we assume the rigid-lid boundary condi-
tion. The present model is solely driven by wind stress:

0

Po-'%g%l::o =Tz (10)
ov

pOAv5;'z=0 =Ty (11)

where 7, and 7, are surface wind stress components.

3 Spectral Element Discretization and Solvers

The basis sets used in the present work are as follows:

Prmn (& 15 C) = ha(€)hm (1) hn(C) l,m,n€{0,1,..N} (12)

where h;(s) are the Gauss-Lobatto-Legendre polynomials.

If we use a single subscript, ¢ (g € {1,2,...,(N + 1)*}), the mapping between a
macroelement, )., and its phase domain, €2, can be expressed as:

X = Xq¥g(€) (13)
Where x € Q¢ and £ € ..

Let solution u at time nAt on each subdomain §2¢ be expanded as:

u®(x, nAt) = ug (nAt)yg[€(x)] (14)
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where fg(t) is the value of function f at the collocation point x4 € Q2° at time t.

By using the same variational procedures as those in [6,7], i.e., all the integrations
are evaluated by the Gauss-Lobatto quadrature scheme, which is an exact formula for
(2N —1)* order polynomials, the spatially discretized formulae for the primitive equa-
tions can be obtained. In particular, the isoparametric spectral element discretization
formulae for the horizontal momentum equations of the present primitive equation
model are virtually identical as those in [6, 7]. One advantage of using the Gauss-
Lobatto-Legendre polynomials as basis functions is that we only have to deal with
one set of grid points for both interpolating the solutions and evaluating the integrals.

We choose the isoparametric spectral element discretization scheme [6, 7], namely,
using nonstaggered grids, for the present numerical model. The nonstaggered for-
mulation avoids spurious pressure modes as staggered schemes do, and, at the same
time, has the advantage that pressure is continuous across boundaries of the spectral
elements. Only one set grids is required for both interpolation and quadrature, hence
simplifying operations.

The discretized incompressibility condition and the hydrostatic condition have the
following format:

[D?][w] = [9]
where [D?] is the matrix generated by applying variational procedures to the vertical

differentiation operator; [w] is the vector representing the unknown at the collocation
points, and [g] is a vector whose components are known.

To obtain the solution for the vertical velocity, w, we need to solve a matrix problem
of the above format. It can be done by using either matrix iteration methods or
direct matrix inversion. The latter is especially efficient when the vertical grains of
the spectral element mesh are parallel to the z axis, since the dimension of the matrix
to be inverted is the same as the number of levels in the vertical direction.

The time marching scheme for the hyperbolic equations of the present model is the
3rd order Adams-Bashforth scheme. This scheme has proven to be efficient in high
Reynolds number, high resolution simulations, especially in a massively parallel com-
puting environment [7]. In fact, except in the upper range of eddy viscosity (diffusion)
for oceanic applications, it is likely to be more efficient to use a fully-explicit scheme
because it results in diagonal stiffness matrices for the hyperbolic equations.

A preconditioned conjugate gradient iterative solver is used in the present model
to solve the elliptic equation [A][z] = [b] associated with the pressure term, which has
the following algorithm

[zo] = initial guess; [ro] = [b] — [A]lza]; [g0] = [P"][ro];  [so] = [go];
O = [Tm) - [5m)/[gm] - {[Allgm]};  [Ema1] = [Em] + Om[gm];
[rms1] = [rm) — om[Allgml;  [Sm+1] = [P—l][rm+1];
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Bm = [Tm+l] ) [3m+1]/[rm] : [sm]; [Qm+l] = [3m+1] + ﬂm[qm] (15)

where P is the Jacobi preconditioner.

Evaluation of the matrix-vector product, [A][u], constitutes the operation count kernel
of the spectral element iteration solver. Inherited from the properties of the spectral
method, the number of operations for the matrix-vector product [A][u] in the present
spectral element model would be proportional to K N?? (d is the number of spatial
dimensions) if a simple-minded algorithm were applied. Although the problem is less
severe for the spectral element method than it is for the spectral method, it still hin-
ders the efficiency of the 3-D model. Fortunately, the partial summation algorithm,
which was first proposed by Orszag (1980) for the spectral method, can drastically
reduce the cost of solving the matrix-vector product problem.

Assume [A] is the global stiffness matrix for the laplacian operator. The straight-
forward spectral element formulation gives the tensor product form

K N N N

[Allul(g,r,8)=3"> > 3 A¥(q,7,5,0,m, n)u*(l,m, n)

k=1 I=0m=0n=0
(g,7,5 € {0,..N}3) (16)

where [A][u](g,, s) are elements of [A][u]; A¥(g,r, 5,1, m,n) are elements of the local
stiffness matrix [A*] and 3’ is the direct stiffness matrix summation. The evaluation
of [A][u], therefore, requires O(K N®) operations.

The present work uses the partial summation algorithm at the elemental level to

evaluate [A][u] more efficiently. A*(q,7,s,!,m,n) can be evaluated in the form of
AMg.r,s,,m,n) = H*(I, q)HY(m, r)H*(n, 3) (17)

where HP(i,j) are functions of i and j.

Therefore, the auxiliary matrices [B] and [C] can be constructed in the following

way:
N

B(l,m,s) =Y u*(l,m,n)H*(n,s) (18)
c(,rs)= g: B(l,m, s)HY(m,) (19)

Then [A*][u*] can be evaluated by

[A¥)[ub) (g, 7, 8) = Z;C(l,r, s)H*(l,q) gq,m,s€{0,1,..,N}® (20)
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Now, the total operation count in computing B, C, and [A4][u] is O(K N*%); this is
N? times less expensive than using the straightforward algorithm to evaluate the
matrix-vector product.

The greatly reduced operation count resulting from the partial summation algorithm
is not the only advantage of the spectral element model in evaluating the matrix-
vector product; it also has a much smaller storage requirement. In fact, the storage
required to evaluate [A][u] for a 3-D model would be O(K N®) instead of O(K*N°®)
because the stiffness matrix elements are “computed on the fly” rather than stored
in the memory.

4 Parallel Implementation

The spectral element primitive equation ocean model is parallelized to run efficiently
on the Connection Machine Model CM5. In order to avoid unnecessary communica-
tion among processing nodes, which is of first order importance in a parallel imple-
mentation on a distributed memory, massively parallel architecture, a data mapping
scheme was created so that all the information related to a given spectral element
is collected in the memory of a single processor. Prior to assembling the global
stiffness-matrices, only data related to a given spectral element are used to create
the local matrices of that spectral element. At this stage, all computations are car-
ried out at the local level, therefore, there is no communication among neighboring
processors while assembling local (elemental) matrices. On the Connection Machine
model CM-5, we pursue data parallelism by designing the layout of the arrays of the
spectral element model in such a way that the axes along the number of elements
are assigned as parallel dimensions, and those along intra-element degrees of freedom
as serial ones. is no communication among neighboring processors during elemental
level computations, and they are performed concurrently across all virtual processors.

The computational kernel of solving the discretized primitive equations model is cal-
culating matrix-vector products. We split the procedure of calculating matrix-vector
products into two steps, each of which admits concurrency. At the first step, the
matrix-vector products are carried out at the elemental level with, for example, the
elemental Laplacian and mass matrices:

(N+1)
k(i) = i ARG guR(e) e {1,2,..(N+1)%, ke{l,2,.,K}(21)

s*(1) = B*(i)u*(3) ie{l,2,..,(N+1)%, ke{l,2,..,K} (22)

After applying tensor-product factorization, the computational complexities to evalu-
ate (21) and (22) would be C; KN%*!/Q and C; K N?/Q, respectively, where Q is the
number of physical processors involved. On the Connection Machine systems, parallel
data structure allows (22) to be performed in an array operation, which means that
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thousands of simultaneous multiplications are made across all the array elements.
Hence, C; is a small number. Consequently, diagonal preconditioning is especially
efficient in the data parallel environment: it does not require direct stiffness sum-
mation, and only local computation is involved. Iteration counts can be reduced by
twenty to thirty percent with about a one percent increase in cost. The processing
nodes on the CM-5 model are equipped with powerful vector-processing units that
can further reduce the cost of elemental level computation. These vector-processing
units are most efficient when the order of the spectral elements is high.

The second step is to carry out direct stiffness summation, YK . ’, in which contribu-
tions from local nodes that share the same physical coordinates are first accumulated,
and then assigned back to those local nodes. In a serial spectral element model, this
procedure can be accomplished by using global and local index systems, and . is au-
tomatically done as the matrix computation is made for each spectral element. In
the parallel spectral element model, however, it is more efficient to use a separate
step for the direct stiffness summation. Since each spectral element has at least one
edge (two-dimensional case) or one surface (three-dimensional case) that is shared by a
neighboring element, the direct stiffness summation can be carried out simultaneously
along these edges or surfaces enabling structured message exchange, i.e., edge-based
message exchange for two-dimensional problems, and surface-based message exchange
for three-dimensional ones. Since this kind of information exchange takes place along
the linkages of the “macro-element-skeleton”, it can be easily synchronized for all
elements in the entire domain. The work per processor that is required in this proce-
dure is C3d K N41/Q. The structured message exchange mostly avoids explicit short
messages, and it considerably improves the parallel efficiency of the spectral element
model.

With parallel prefix of the CM Fortran, MATMUL and SUM, an inner product can
be executed completely in parallel. Its computational complexity is C4K N?/Q. Due
to the high level of concurrency afforded by the parallel prefixes, Cy is a small number.

In high Reynolds number case, the discretized horizontal momentum equations only
requires a direct method to solve. The computation kernel here is the evaluation
of the advection term where concurrency can be achieved at different levels of the
computation. We first evaluate the shears of velocities at all nodal points

pume(l) NIV aye
ij - S_Z_; um (s)aﬁL‘j

le {1,2,...,(N+1)%, mje{l,2,..,d}* eec{l,2,..,K}(23)

This operation is executed concurrently across all virtual processors. With the partial
summation method, the computational complexity for (23) is Cs K (N +1)471/Q. The
discretized advection term also can be written as
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Therefore, once the shears of velocities are obtained, the remaining operation to
evaluate the advection terms is the same as that of (22) Hence, the total computa-
tional complexity of (24) is CoK(N + 1)4/Q + CsK(N +1)%1/Q.

As spectral elements are of high-order, most of the costly operations are at the el-
emental level, and they are executed concurrently. The spectral granularity at the
elemental level can take full advantage of the computing power that the latest process-
ing units provide. The structured message exchange, combined with parallel prefix,
makes inter-element communication a lower-order rather than a highe-order cost,
compared to that of elemental level computation. This communication cost should
be much smaller than that of the h-type finite element model, partially because many
fewer redundant nodel values, shared by more than one element, have to be stored.
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Figure 1. Parallel performance measure on a CM5 partition with 256 processors.
N =6.

In the parallel implementation of the present spectral element model on the CM5, the
number of virtual processors always equals to the number of spectral elements. There-
fore, we can use “equivalent speedup”= (K * T1)/Tx and “equivalent efficiency” =
T,/Tx to measure the parallel performance of the spectral element primitive equa-
tion model, where Tx is the CM5 cpu time per time step with K spectral elements.
Since on a serial computer, the computational cost of the spectral element primitive
ocean model is proportional to the number of spectral elements, K * T} is roughly
how much time it would take to execute one time step if the CM5 had only one
processor. Figure 1 shows that with a fixed number of physical processors, the per-
formance of the spectral element primitive equation model scales very well until the
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number of spectral elements becomes so large that the memory in the CM5 partition
is saturated. The excellent scalability of the model recovers when the size of the CM5
partition is increased.

5 Results From An Equatorial Atlantic Experiment

In this numerical experiment, the model is driven solely by surface wind stress, and
the model ocean is an idealized rectangular basin. It is designed to study the effect of
wind in the formation and variation of important equatorial ocean phenomena which
are meso-scale at least in one spatial dimension, such as low-latitude western bound-
ary currents, eddies, and vertically/meridionally alternating low-latitude zonal jets.
The assigned values for the horizontal and vertical eddy viscosity coefficients for the
current simulation are 2.4%10% cm2s™! and 30 cm?s™!, respectively. Since the present
spectral element model has adequate resolution to resolve meso-scale eddies, we were
able to use a horizontal eddy viscosity coefficient which is an order of magnitude
smaller than what was typically used in OGCMs to allow the meso-scale processes to
be modeled more realistically.

The lengths of the edges of the macro spectral elements which were used to discretize
the present model measured 3.5° in the meridional direction, and 90 m vertically. A
strip of refined spectral elements is embedded in the region west of 34° W where the
zonal length of the macro spectral elements measured 1.5°; elsewhere it measured
6°. This discretization strategy is based on the fact that short equatorial waves are
confined near to the western boundary region. The seventh order Gauss-Lobatto-
Legendre polynomials were used to construct the basis functions within each macro
spectral elements. Based on the role-of-thumb that 3.5 interpolation points per wave-
length would be required for the spectral element model to resolve a wave-like solution
with O(1%) numerical error, the present spectral element ocean model configuration
can adequately resolve waves of wave-lengths 150 km in the meridional direction, 50
m in the vertical direction, and 70 km in the zonal direction (300 km if east of 34° W).

Figures 2a and 3a show that beneath the surface layer, there are bands of west-
ward currents centered around 10°N and 9°S, which supply the equatorward western
boundary undercurrents. Compared with the observed structure of the intermediate
layer currents [2], these model subsurface westward currents correspond to the North
and the South Equatorial Currents (NEC and SEC), respectively. In the winter sea-
son, the model North Equatorial Undercurrent (NEUC) at 3°N is fed from the north
by the southward western boundary undercurrent, supplied by the NEC. In summer
season, the southward western boundary undercurrent does not reach as far south as
in winter, and it veers into the North Equatorial Countercurrent (NECC) centered
at 7°N. In the upper part of the undercurrent layer (~ 100 m deep), in all seasons,
the SEC feeds the model North Brazil Current (NBC) which in turn feeds the South
Equatorial Undercurrent (SEUC) near 3°S and the EUC. The model NBC also feeds
the NEUC in summer, in contrast to the northerly supply of the NEUC in winter.
An interesting phenomenon is that while the model NEUC is a permanent current
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feature, its supply in the western boundary region alternates between a southerly and
northerly one depending on the season. From Figures 2a and 3a, we note that outside
the western boundary region, the EUC provides input to the NEUC and the SEUC
through poleward meridional flows on both of its sides. The present model reproduces
the retroflection of the NBC near 4°N in summer. In the upper undercurrent layer,
the NBC curves back to the NEUC (Figure 3a).

15 cm/s 15 em/s

()

Figure 2. Model currents in January. (a) 100 m. (b) 200 m.

15 cm/s 15 em/s
— ——

45W 40 35 30 25w

(a)

Figure 3. Model currents in July. (a) 100 m. (b) 200 m.
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In the lower undercurrent layer (~ 200 m), the eastward model NEUC and SEUC
diminish, and the model Equatorial Undercurrent (EUC) is now flanked by two west-
ward off-equatorial undercurrents located at 1.5°N and at 1.5°S (Figures 2b and 3b).
In winter, the westward off-equatorial current north of the equator diminishes east
of 35°W (Figure 2b). Also, in summer at this vertical level, the equatorward (south-
ward) off-shore countercurrent, which is part of the NBC retroflection, extends all the
way to the equator where it joins the EUC. At 100 m depth, however, this countercur-
rent merges instead with the NEUC (Figure 3a). The model NBC does not retroflect
in winter. In the lower part of the upper-layer (below 200 m), however, there is an
offshore anticyclonic gyre at the same latitude where the NBC retroflects in summer
(Figure 2b). The temporal and spatial features of the model upper ocean currents
described in this section closely resemble those of their counterparts observed in the
tropical Atlantic, which are summarized in [2].

It is interesting that the branching of the model NBC is strongly layered. In the
near-surface layer, the NBC feeds the NECC between 6°N and 9°N in winter, and
between 4°N and 7°N in summer. Below the near-surface layer, the model NBC orig-
inates south of the equator. In the layer between 60 m and 80 m depth, the NBC
branches off mostly to the SEUC near 4°S ; in the layer between 150 m and 250 m,
it branches mostly to the EUC; and in the intermediate layer between these two, it
supplies both the SEUC and the EUC. In summer season, at depths below 400 m,
the model NBC does not branch off to eastward interior flows until it reaches near
4°N where it retroflects into an equatorward countercurrent which eventually joins
the model EUC. This layered separation pattern of the NBC was also reported in
water mass studies, e.g.,[3,12].

The fact that the present model reproduced all major features of the currents in
the upper couple hundred meters of the tropical Atlantic Ocean suggests that the
wind effect here is the deterministic mechanism of current formation an d variations.
More details of the present numerical simulation are described in [11].

6 Conclusions

The present work shows that high order domain decomposition ocean models can be
efficiently implemented on massively parallel architectures, such as the Connection
Machine Model CM5. The optimized computational efficiency of the parallel spectral
element ocean model comes not only from the exponential convergence of the nu-
merical solution, but also from the work-intensive, medium-grained, geometry-based
data parallelism. The data parallelism is created to efficiently implement the spectral
element ocean model on the distributed-memory massively parallel computer, which
minimizes communication among processing nodes and results in a highly scalable
performance. The same advantage of the nonstaggered grid formulation was found in
the present parallel, three dimensional, spectral element ocean model as in the earlier
spectral element shallow water equation model [6,7].
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Abstract
A climate model which couples ocean, sea ice, atmosphere and land
components is described. The component models are run as autonomous
processes coupled to a flux coupler through a flexible communications
library. Performance considerations of the model are examined, particularly
for running the model on distributed-shared-memory machine architectures.

1. Introduction

To gain a full understanding of the Earth’s climate system, it is necessary to understand
physical processes in the ocean, atmosphere, land and sea ice. In addition, interactions
between components are very important and models which couple all of the components
into a single coupled climate model are required. A variety of such models have been
developed using quite different approaches. For example, the Geophysical Fluid Dynamics
Laboratory (GFDL) coupled model [1] is a single integrated model which is run at very
coarse resolution for many thousands of years. At the other end of the spectrum is the
Climate System Model (CSM) [2] at the National Center for Atmospheric Research
(NCAR) which couples different models running autonomously at moderate resolution.
Our ultimate goal is to produce a coupled model which can be used for century-scale
climate simulations at resolutions that will allow us to resolve eddy processes which are
important in ocean dynamics.

For high-resolution climate simulations, it is important to develop a coupled climate model
that runs efficiently on advanced computer architectures. There are two very similar efforts
towards running high-resolution climate models on paralle] architectures. One of these is
the Paralle] Climate Model (PCM) at NCAR led by Warren Washington [3]. In this model,
each component model is a parallel model, but all of the components are combined into a
single executable and run serially in a single partition of a parallel machine. We have
instead used an approach very similar to the NCAR CSM model, using a set of
autonomous component models running as separate executables and communicating using
message-passing through a flux coupler. In the next section, we will describe the model in
detail. The following sections will examine aspects of the model which affect
computational performance and describe future improvements in the model.
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II. Model Description

The Los Alamos Coupled Model utilizes the framework of the NCAR CSM model in which
ocean, atmosphere, land and sea ice models are run as separate autonomous executables
which communicate through another executable called a flux coupler. We are using the
NCAR Flux Coupler [4] with a few modifications which will be described later. The flux
coupler keeps all the models synchronized and computes many of the interface fluxes
between models. Most component models send their state variables at the
atmosphere/ocean interface to the coupler and the coupler computes fluxes based on those
state variables; exceptions to this rule will be discussed below. Fluxes computed by the
coupler are computed on the finest component model grid (usually the ocean grid),
requiring the flux coupler to remap fields from one grid to another. One of the changes we
have made to the CSM flux coupler is to include a very general conservative remapping
scheme developed at Los Alamos which will perform first and second-order conservative
remappings for any grid on a sphere [5). Another issue resulting from the use of different
grids is the consistency of land masks. Because the flux coupler computes most fluxes on
the ocean grid, the ocean model serves as the “master” grid and all other grids must
conform to the land/ocean mask on that grid. In some cases, land mask discrepancies
result in the land model computing land values unnecessarily over ocean points and the
coupler treats this correctly by simply multiplying that value by a land fraction of zero.
However, problems occur when the ocean model dictates that some fraction of an
atmosphere grid cell should be land, but the land model treats the cell as an ocean point.
This can occur on continental margins or for inland seas that the ocean model ignores.
Each of these cases require altering the land-model mask to compute land values at these
points.

The flux coupler and component models communicate through the Model Coupling Library
(MCL) [6] developed by John Dennis at NCAR. This library provides a flexible message-
passing fabric, allowing the user to choose the communication protocol and providing a
relatively robust error detection mechanism so models can shut down gracefully if a
particular component stops prematurely.

The ocean model is the Los Alamos Parallel Ocean Program (POP) developed by Smith,
Dukowicz and Malone [7] based on earlier models by Bryan [8], Cox [9], Semtner [10]
and Chervin [11]. The POP model was written specifically for parallel machines and
supports a variety of programming models, including message-passing, shared-memory
and data-parallel. The model integrates the primitive equations using a B-grid for the
horizontal discretization and depth (z) as the vertical coordinate. The primitive equations
are split into baroclinic and barotropic modes and the baroclinic modes are advanced in time
using a leap-frog scheme. The barotropic equations have been formulated to solve for the
surface pressure and the equations with a free-surface boundary are solved implicitly using
a preconditioned conjugate gradient solver [12]. For the simulations described here, the
Gent-McWilliams parameterization [13] for mixing along isopycnal surfaces is used as well
as the k-profile parameterization (KPP) [14] for vertical and mixed-layer mixing. The POP
model also uses a displaced-pole grid [15] (see Figure 1) which allows simulation of the
arctic regions without the use of filtering or restrictive time steps. This is very useful in
coupled climate simulations where arctic processes are extremely important. Our initial
ocean resolution is a global grid at an average horizontal resolution of 2/3 degree and 32
vertical levels with non-uniform spacing (finer vertical resolution near the surface). Due to
the relatively slow timescales in the ocean, the ocean model communicates with the flux
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coupler only once per day. Sea surface temperature, surface salinity, two velocity
components and the surface slope are sent to the coupler while the coupler sends to the
ocean the wind or ice stress, net shortwave radiation flux, total non-shortwave heat flux
(longwave, sensible and latent heat) and total water flux (precipitation, evaporation, melting
and river runoff).
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Figure 1. The POP displaced-pole grid with the pole shifted into the North American
continent.

Sea ice is simulated by the CICE model, a new ice model developed by Hunke and
Dukowicz at Los Alamos. The CICE model utilizes an elastic-viscous-plastic ice rheology
[16] for the ice dynamics which allows a fully-explicit formulation ideal for parallel
computers. The ice thermodynamics is computed using a three-layer model of Semtner
[17,18]. Currently, this model uses a directive-based loop-level parallelism which can be
used on shared-memory machines like the SGI/Cray Origin 2000. Modifications for a
message-passing version are in progress. The CICE model uses the same generalized grid
that the POP ocean model uses and in the model presented here is always run on the same
ocean grid, eliminating the need for remapping between ice and ocean. Unlike the other
components, the CICE model computes the surface temperature, latent heat, sensible heat
and upward longwave flux self-consistently using an iterative method. The ice also
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responds relatively rapidly to the winds from the atmosphere and the ice model therefore
communicates with the flux coupler every two hours. The ice model sends to the coupler
the ice fraction, surface temperature, four albedo components, stress at the ice/ocean
interface, heat flux due to melting/freezing, total water flux at the ice/ocean interface,
shortwave radiation that penetrates through the ice, latent heat, sensible heat, upward
longwave and evaporative water flux. From the coupler, the ice model receives sea surface
temperature, salinity, two ocean velocity components, ocean surface slope, conductive heat
flux from ocean, height of first atmospheric model level, atmospheric wind speed,
atmospheric potential temperature, specific humidity, net shortwave radiation flux,
downward longwave radiation flux, wind stress and precipitation water flux. Because
CICE computes many fluxes internally and exists at the interface between atmosphere and
ocean, it requires exchanging a large number of fields with the flux coupler.

For the work presented here, the atmosphere and land models are combined in the NCAR
Community Climate Model (CCM3) [19]. Recently, the land model has been separated
from the atmosphere model into the NCAR Land Surface Model (LSM). The CCM3 model
is a global spectral model for the atmosphere which is too detailed to describe fully here.
The land surface model is a comprehensive physical model of energy, momentum, water
and CO7 exchange between the atmosphere and land with varying soil and vegetation types
[20]. The CCM3 model is typically run at T42 resolution (approximately 2.8 degrees) in
the horizontal and 18 levels in the vertical. Currently, CCM3 uses directive-based loop-
level parallelism with a one-dimensional decomposition in latitude (the outer latitude loop is
paralielized). A full message-passing version with two-dimensional decomposition is in
progress through a collaboration between NCAR and Oak Ridge National Laboratory. The
atmosphere has the shortest timescale variability (in the surface fields) of any model and
must therefore communicate the most frequently. Initially, CCM3 communicated every
model step (20 minutes) but this frequency was reduced to one hour for performance
reasons (see next section). The atmosphere sends to the coupler the height of the first
model level, two wind components, potential temperature, specific humidity, density, net
shortwave radiation, downward longwave radiation, and precipitation water flux. The
atmosphere receives four albedo components, surface temperature at every point, wind
stress, latent heat flux, sensible heat flux, upward longwave heat flux and evaporative
water flux. The land model, like the ice model, computes many fluxes internally and
passes to the flux coupler the four albedo components over land, land surface temperature,
latent heat flux, sensible heat flux, upward longwave heat flux and evaporative water flux
over land points.

As mentioned above, the flux coupler computes many of the interface fluxes, including the
wind stress, latent, sensible, upward longwave heat flux and evaporative water flux over
ocean points. It also computes albedoes over the ocean. Because the land model currently
has no river runoff model, we have added a simple runoff scheme into the coupler. This
scheme computes the excess evaporation over precipitation on ocean grid points,
representing the net excess of precipitation over land area. This excess is distributed at
river outlets with a weighting based on annual-average river output. Lastly, the coupler
contains routines for averaging the various fields before sending the fields to the
appropriate model. The averaging can be in space when combining land/ocean values
before sending to the atmosphere (based on the fractional area of the cell covered by land,
ocean and ice). Averaging in time occurs for models which communicate less frequently;
the ocean for example is sent the average fluxes over the previous day.
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HI. Performance Issues

Obviously, the primary factor that affects performance of the coupled model is the
performance of each individual component. However, running each component as separate
executables offers another level of parallelism which can be exploited. Inter-model
parallelism is not immune to factors which interfere with efficient parallelism in individual
component models. One impediment to parallelism occurs when the interaction between
models results in serial dependencies. Efficient parallelism is also inhibited when the
components are not well load-balanced, resulting in processors assigned to a component
remaining idle because that component must wait for another component to finish.

Serial dependencies result from the choices of which model computes fluxes and how often
those fluxes must be exchanged. For example, the flux coupler is computing the upward
longwave, latent and sensible heat fluxes. If the atmosphere is to respond immediately to
these fluxes, it must communicate every time step (20 minutes for CCM3 at T42
resolution). However, this means that the coupler and the atmosphere model are running
serially because each must wait until the other finishes before continuing. If the coupler is
running sufficiently fast on very few processors this is not a problem, but we have found
that in practice this would require allocating too many processors to the coupler which
would then sit idle while waiting for the atmosphere. Instead, the atmosphere model can
communicate less frequently (once per hour) and can integrate for three time steps before
having to stop and exchange messages with the coupler. The serial interaction with the
coupler is then a much smaller fraction of the total running time.

The second reason for serial dependencies is that after a model receives a message from the
coupler, it may need to perform some calculations before sending a message back to the
coupler. The coupler may be waiting for this information before it can continue so it is
important to minimize the amount of work between a receive and a send in each component
model. In some models, the work between messages can be eliminated by using variables
from a previous time level. For example, the ocean communicates with the coupler once
per day, receiving fluxes from the coupler that have been averaged over the previous day
and sending back to the flux coupler ocean state variables from the previous time step. In
this case, no work needs to be performed since the necessary information is readily
available and can be sent immediately after a receive. This is acceptable for the ocean model
because the ocean responds slowly in comparison to the other models. Unlike the ocean
model, the ice model responds more quickly to fluxes like the wind stress. In addition, the
ice model computes surface latent and sensible heat fluxes internally which are needed
immediately by the atmosphere model. When the CICE model was first coupled with the
atmosphere and ocean, the model was written in such a way that it would receive
information from the coupler and advance an entire time step before sending the necessary
flux information back to the coupler. However, the fluxes required were actually computed
first in the relatively fast thermodynamics phase, so we could reduce the serial dependence
greatly by sending the fluxes back immediately after the thermodynamics phase and the ice
dynamics could then proceed in parallel with the other components.

In order to use computational resources most efficiently, it is necessary to load balance the
component models so that processors associated with a component are not wasted idly
waiting for another component to finish before they can synchronize. The load balancing
process is made easier if the scaling of each model is predictable and if the model is flexible
enough to run on any configuration of processors. Figure 2 shows the scaling of each
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component model running on a Silicon Graphics/Cray Research Origin 2000. The results
indicate that directive-based parallelism for multi-threading at the loop level does not appear
to scale well above 16 processors. Because we would like to use as many processors as
possible to integrate in the shortest time, this poor scaling will create problems. Currently,
for a load-balanced run, we would require 32 processors for the atmosphere, 16 processors
for the ocean and four processors for CICE. Trying to run at higher processor counts
would not improve the total run time because CCM3 would not run as efficiently at 64
processors. The current version of CCM3 also will not scale beyond 64 processors at T42
resolution because the parallelization only occurs over the latitude loop. As mentioned
above, a version of CCM3 with message-passing and a two-dimensional decomposition is
in progress and this should allow us to run much more efficiently at higher processor
numbers. Another example of poor scaling in Figure 2 is the conservative remapping
scheme. One portion of this scheme which accumulates partial sums scales very poorly
with processor number. This non-scaling part of the routine will also dominate as we
move toward higher resolution models, so while the run time is currently relatively small
for this combination of models, the remappings could create problems at higher
resolutions. We are currently investigating more efficient methods for implementing these

remappings.
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Figure 2. CPU time per model day for component models as a function of the number or
processors. CCMS3 is at T42 resolution while POP and CICE are at 2/3 degree resolution.
The remapping times are the time spent in the coupler remapping fields from one grid to
another.
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As mentioned above, we have used the Origin 2000 computer for our simulations. The
Origin 2000 is a distributed-shared-memory machine, meaning it has a cache-coherent
globally-addressible memory which is physically distributed across processors. This
architecture has the advantage that it supports a variety of programming models so that we
can mix message-passing codes with multi-threaded codes. We have taken full advantage
of this feature of the architecture. The current implementation of distributed-shared-memory
also has some disadvantages. Because all processors can access memory across the
machine, the operating system currently can not ensure that processors and memory are
truly dedicated to a particular model. This can create problems if one of the threads from
the atmosphere, ice or coupler begins to use the memory of a processor running another
component model, resulting in a substantial degradation in performance for both processes
involved. In practice, such a situation can be avoided if all users of a machine give the
batch scheduler the proper resource parameters (number of processors and memory size) so
that the scheduler does not oversubscribe the resources of the machine. It is also important
to know that the system spawns an extra process for parallel jobs so that when running a
32-processor MPI job, the user should ask for 33 processors.

Our system at Los Alamos is actually a cluster of Origin 2000 machines. The simulations
we have run so far have only utilized single boxes of up to 128 processors. The MCL
communications library is flexible enough to run each component on a separate box. The
batch scheduler also can allocate processors across boxes in any particular configuration,
but currently cannot allocate particular executables and their job scripts to run
simultaneously on the properly-sized set of processors. This capability will be necessary
as we move to very high resolutions.

IV. Conclusions

We have found the NCAR Flux Coupler concept to be a very flexible and efficient way for
us to quickly couple the POP ocean model, the CICE ice model and the CCM3 atmosphere
and land model. We continue to improve the performance of each of the components in
order to increase the efficiency of the model. In particular, we are working to improve the
remappings within the flux coupler in order to reduce the amount of time spent in that
component. Additionally, we are working on improvements to the POP model that could
substantially improve the performance on cache-based microprocessor and allow us to run
at higher resolutions.

The flux coupler concept may present problems for other model combinations or computer
architectures. For example, in the coupled model described above, the CICE component
requires the upward longwave, latent and sensible heats to be computed implicitly and self-
consistently with the surface temperature. If we were to couple POP and CICE to an
atmosphere model which also required these fluxes to be computed internally in the
atmosphere model, one of the models would have to be altered to accept fluxes computed
externally. Computer architecture flexibility is also required if all the components use
different programming paradigms. Distributed-shared-memory machines are ideally suited
as they can be programmed using message-passing, multi-threading or shared-memory
paradigms. Other architectures have operating systems which do not allow separate
executables to run simultaneously in the same partition.
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Portability and Performance of a Parallel Coupled Climate Model

The Parallel Climate Model (PCM) is a coupled climate system model being developed in a collaborative effort at
NCAR with support from the DOE Climate Change Prediction Program (which includes scientists and software
engineers from the Los Alamos National Laboratory and the Naval Postgraduate School). PCM has four
components: ocean, atmosphere/land, and ice models, and a flux coupler, all combined into a single portable
program which can be run on several parallel platforms. The ocean, atmosphere/land, and ice component models
are configured on different grids with different time steps. Component model interactions, both temporal and
spatial, are coordinated through the flux coupler. In this paper, we discuss the details of the coupled mode! software
architecture and the strategies used for maintaining both code portability and performance portability across
platforms. We present details of the computational and communication efficiency for the complete coupled model
as well as the individual components on different systems from different vendors. Finally, we compare and contrast
PCM performance and scaling results on several different parallel machines for four processors up to hundreds of
PrOCESSOI1s.
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Abstract

The design, implementation and performance optimization on the CRAY T3E of an atmospheric
general circulation model (AGCM) which includes the transport of, and chemical reactions among,
an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-
dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts
centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among
processors through load redistribution schemes. Recent optimization efforts have centered on
single-node optimization. Strategies employed include loop unrolling, both manually and through
the compiler, the use of an optimized assembler-code library for special function calls, and
restructuring of parts of the code to improve data locality. Data exchanges and synchronizations
involved in coupling different data-distributed models can account for a significant fraction of the
running time. Therefore, the required scattering and gathering of data must be optimized. In
systems such as the T3E, there is much more aggregate bandwidth in the total system than in any
particular processor. This suggests a distributed design. The design and implementation of a such
distributed '‘Data Broker' as a means to efficiently couple the components of our climate system
model is described.

1. Introduction

The primary means of studying the Earth's climate and its variability is numerical modeling.
Numerical models of the climate system must account for the complex interactions and feedbacks
among its components. Examples of phenomena that can be studied using such ‘climate system
models' are El Nifio-Southern Oscillation events, the role of the oceans in moderating the
greenhouse warming effect of carbon dioxide and other gases, and the behavior of the ozone layer.
The primary components of the climate system are the atmosphere and ocean, which are
represented by general circulation models (GCMs). Led by Akio Arakawa, the Department of
Atmospheric Sciences at UCLA has pioneered the development of atmospheric GCMs (AGCMs).
These models are constantly being improved through revisions in their numerical schemes and
physical parameterizations as well as through the incorporation of new physical processes.
Simulations using GCMs are computationally very demanding because there are a large number of

physical quantities to be predicted and also because very long simulations (on the order of 107
model timesteps) are usually required. We are now entering "the great challenge" third phase of
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atmospheric modeling (Arakawa [1]). To meet the challenges of this phase, it is essential to: 1)
revise the dynamical core of atmospheric models and adjust the physical parameterizations to
accommodate the new core, and 2) optimize the model’s code for high performance computing
environments. In this paper, we address the second of these required developments with an
account of the design, optimization and performance of the UCLA GCM code including chemical
tracers in scaleable parallel computing environments. ~We also review the design and
implementation of a system we have developed to efficiently couple this model to an ocean GCM.

2. The AGCM and the parallel implementation of its code

The UCLA AGCM is a state-of-the-art finite-difference model of the global atmosphere. The
model predicts the horizontal wind, potential temperature, water vapor mixing ratio, planetary
boundary layer depth and the surface pressure as well as the surface temperature and snow depth
over land. The model also optionally predicts the concentrations of an arbitrary number of
chemical tracers. The horizontal finite-differencing is done on a staggered Arakawa "C"-grid
which is regular in longitude and latitude and is a fourth-order accurate version of the differencing
scheme of Arakawa and Lamb [2]. The differencing of the thermodynamic energy and water vapor
(and other tracers) advection equation is also based on a fourth-order accurate scheme. The vertical
coordinate used is the modified sigma coordinate of Suarez et al. [3]. In this coordinate, the lowest
model layer is the planetary boundary layer. The vertical finite differencing is performed on a
Lorenz-type grid following Arakawa and Lamb [2] in the stratosphere and Arakawa and Suarez [4]
in the troposphere. This differencing is of second order accuracy and is designed to conserve the
global mass integrals of potential temperature and total energy for adiabatic, frictionless flows. For
the integration in time of the momentum, thermodynamic energy and tracer advection equations, a
leapfrog time differencing scheme is used with a Matsuno step regularly inserted to prevent
separation of the solution. Filtering of selected terms in the prognostic equations is performed at
high latitudes (see Section 2b). A nonlinear horizontal diffusion of momentum, with a small
coefficient, is included following Smagorinsky [5]. This diffusion is applied at each time. step,
using a forward time differencing. In layers where an unstable stratification of mass develops
(potential temperature decreases with height), it is assumed that sub-grid scale dry convection
occurs and the prognostic variables in the layers involved are completely mixed.

Planetary boundary layer processes are parameterized using the mixed-layer approach of Suarez et
al. [3]. In this parameterization, surface fluxes are calculated following the bulk formula proposed
by Deardorff [6]. Parameterization of the effects of cumulus convection, including its interaction
with the PBL, follows Arakawa and Schubert [7] and Lord et al. [8], with a relaxed adjustment
time scale as described in Ma et al. [9] (see Section 2c). The parameterization of both terrestrial
and solar radiative heating follows Harshvardhan et al. [10, 11]. The cloud optical properties are
specified as in Harshvardhan et al. [11]. This prescription makes a distinction between stratiform
and "cumulus anvil"-type clouds. "Cumulus anvil"-type clouds are assumed to exist at each model
layer above 400 mb where the cumulus mass flux is positive; stratiform clouds are assumed to
occur at grid points where the predicted relative humidity exceeds 100%. The effects of subgrid-
scale orography are included via a gravity wave drag parameterization (Kim and Arakawa [12],
Kim [13]). The transformations of chemically active gases and aerosol tracers in the atmosphere
are described by the UCLA atmospheric chemistry model (ACM). This model includes algorithms
to solve photochemical and thermochemical coupled systems, a detailed treatment of the
microphysics of small particles, and a fully integrated radiation package (Elliot et al. [14] and
references therein). The geographical distribution of sea ice and sea surface temperatures are
prescribed on a monthly basis. Surface albedo and roughness lengths are specified following
Dorman and Sellers [15], in which roughness lengths over land vary according to vegetation type.
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Daily values of these surface conditions are determined from the monthly mean values by linear
interpolation.

a. Structure and parallel implementation of the code

In AGCMs physical processes are modeled either explicitly or implicitly via parameterization of the
effects of subgrid physical processes on the grid-scale processes. This division is reflected in the
UCLA AGCM code in that there are two major code components: AGCM/Dynamics, which
computes the evolution of the fluid flow governed by the primitive equations, and AGCM/Physics,
which computes the effects of subgrid scale processes (such as cumulus convection) on the grid
scale (see Figure 1). Included in the AGCM/Physics are the calculations performed by the ACM.
The results obtained by AGCM/Physics are supplied to AGCM/Dynamics as forcing for the flow
calculations. The parallel version of the UCLA AGCM code was designed for distributed memory
multiprocessor computing environments (Wehner et al. [16]). A two-dimensional domain
decomposition of the horizontal data domain (longitude-latitude) is used. Subdomains thus consist
of a set of vertical columns from the Earth's surface to the top of the atmosphere. This choice is
based on the fact that many physical processes are strongly coupled in the vertical which makes
parallelization less efficient in that direction. In addition, the number of grid points in the vertical is
usually small compared to the number in the horizontal. There are two types of interprocessor
communications required during the simulation: 1) data exchanges among (logically) neighboring
processors to accomplish the finite differencing, 2) data exchanges among remote processors
necessary for implementation of the high latitude Fourier filtering (see Section 2b). We next
review the structure and implementation of the most computationally intensive algorithms, first
those in the AGCM/Dynamics, then those in the AGCM/Physics.

b. AGCM/Dynamics kernels
1) Vertical discretization

The model is formulated using a modified sigma (pressure divided by surface pressure) coordinate
in which the top of the model layer nearest the Earth's surface (called the planetary boundary layer,
or PBL) is a coordinate surface (Suarez et al. [3]). Hence, the pressure levels corresponding to
particular values of sigma vary with time. The prognostic variables are staggered in the vertical
following the Lorenz scheme, in which potential temperature, the horizontal wind components and
the mixing ratio of water vapor are defined in the middle of the layers, while the diagnostically
determined vertical velocity is defined at the interfaces between the layers. Accomplishing this
vertical differencing is computationally demanding because it requires the calculation at every
timestep of several functions of pressure involving exponentials and real numbers raised to a real
power. We describe our approach to optimizing this part of the code in Section 3a.

i1) Polar filtering
To avoid use of the extremely small timestep necessary to satisfy the Courant-Friedrich-
Levy (CFL) condition near the poles, a longitudinal averaging (which takes the form of a Fourier

filter) is performed on selected terms in the momentum equation. This filter acts poleward of 45°
latitude and its strength is gradually increased towards the pole by increasing the number of
affected zonal wavenumbers and the amount by which they are damped (Arakawa and Lamb [4]).
As explained in Lou and Farrara [17], the high cost of performing this filtering stems from two
factors. The first is the substantial non-nearest neighbor communication required. The second is
the severe load imbalance imposed by the fact that only subdomains containing high-latitude points
perform this filtering. Lou and Farrara [17] describe a load-balancing scheme for the filtering
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which is based on evenly distributing complete longitude-height slices of fields to be filtered
among all processors. We describe our attempts to further optimize this part of the code in Section

c. AGCM/Physics kernels
i) Terrestrial radiation

The parameterization of terrestrial radiation follows Harshvardhan et al. [10, 11]. This scheme
includes the effects on longwave radiative transfer of water vapor, carbon dioxide and ozone as
well as convective and stratiform clouds. The absorption/emission of radiation is determined using
the broadband transmission approach of Chou [18] for water vapor, that of Chou and Peng [19]
for carbon dioxide and that of Rodgers [20] for ozone. In this approach, the transmission
functions for reference atmospheric temperature profiles at specified pressure levels are
precomputed using highly accurate line-by-line methods. Adjustments are then made to these
precomputed transmission functions via 'scaling functions', together with the temperature
deviations from the reference profile, to obtain transmission functions for other atmospheric
profiles. Thus, the success of the parameterization rests in part on the choice of reference
conditions, and these are chosen to correspond to the regions of peak cooling in the atmosphere.
Transmittances are computed in five bands, two each for water vapor and carbon dioxide and one
for ozone. The original implementation of this code [18] was designed for vector supercomputers
and performed table look-ups of the precomputed transmission functions. The table lookups were
replaced by fitting algebraic functions to the tables since the table lookups were difficult to
efficiently vectorize. The algebraic functions are mostly exponentials, while the scaling functions
contain the scaled pressure raised to a real constant. In order that the code vectorize efficiently it
was structured to perform calculations on multiple atmospheric columns simultaneously.
However, this structure is not optimal for the T3E processors since the cache reuse is poor. We
describe our restructuring of this code for greater efficiency on cache-based architectures in Section
3c.

1) Cumulus convection

The Arakawa-Schubert parameterization (Arakawa and Schubert [7], Lord et al. [8]) is used to
compute the interactions of grid-scale prognostic variables and subgrid-scale cumulus convection.
Specifically this parameterization determines the mass fluxes produced by subensembles of
cumulus clouds originating in the PBL. These mass fluxes are used to obtain the heating, moisture
source/sink and momentum redistribution in the vertical. Multiple cloud types are permitted and all
clouds of a particular type are assumed to be identical. The total collection of cumulus clouds is
referred to as a cumulus ensemble, and the clouds that belong to a particular cloud type are referred
to as a subensemble. Each subensemble is distinguished from the others by its fractional
entrainment rate, which is assumed to be independent of height.

There are two primary components to the AS scheme. The first component describes how the
internal sounding of an individual cumulus cloud is controlled by the large-scale environment in
which it develops. This component is called the "static control". The second component describes
how an ensemble of cumulus clouds modifies the large-scale thermodynamic structure of the
atmosphere. This component of the parameterization is called the "feedback”. The large-scale
tendencies due to a particular subensemble are proportional to the cumulus mass flux at the cloud
base (the PBL top) for that subensemble. The AS parameterization can thus be closed by
determining cumulus mass fluxes at the cloud base associated with each subensemble. This
closure is achieved through a description of how the cloud-base mass fluxes are controlled by the
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evolution of the large-scale environment. This is called "dynamic control”. Specifically, the rate at
which conditional instability is generated by large-scale processes is very nearly balanced by the
rate at which cumulus clouds suppress conditional instability by their feedback on the large-scale
environment. This is referred to as the "quasi-equilibrium” hypothesis. As a measure of
conditional instability, AS defined a cloud work function (CWF) as the rate of generation of
cumulus cloud-scale kinetic energy for a particular subensemble, per unit cloud base mass flux into
that subensemble. According to this definition, the CWF as well as the cloud base mass flux are
positive or zero. Positive values of the CWF indicate the existence of conditional instability for a
given subensemble. The CWF is computed from the environmental sounding using a simple cloud
model. In practice, solving for a set of cloud base mass fluxes (one for each subensemble) subject
to the condition that all must be non-negative is mathematically tricky and expensive
computationally.

Since the model has a discrete vertical structure, cloud types (subensembles) are denoted by their
cloud-top pressure rather than fractional entrainment rate. However, since the fractional
entrainment rate is needed to determine the in-cloud sounding, it is necessary to solve for the
fractional entrainment rate that is consistent with each cloud-type each time the parameterization is
invoked. Since this solution must be obtained iteratively, it is rather expensive computationally.
The rate at which conditional instability is generated by large-scale processes is straightforwardly
determined. The rate at which each cloud type suppresses conditional instability (and thereby
interacts with every other cloud-type) is somewhat more complicated to compute. A small "trial
mass flux" is assigned to each cloud type in turn. This trial mass flux is assumed to act over a time
interval on which the parameterization is called, producing changes in the temperature and moisture
profiles through the feedback process; the implied change in each cloud-type's work function is
then evaluated. In Section 3d we explore a computationally less expensive option to this
algorithm.

3. Optimization of major computational kernels

In this section, we discuss the results of our effort to optimize the most computationally intensive
algorithms, first those in the AGCM/Dynamics, then those in the AGCM/Physics. It should be
noted that there are a number of other routines (parts of the algorithm) that contribute significantly
to the overall execution time; this makes the optimization of GCMs especially challenging. All
timings reported in this section correspond to the wall-clock times required to simulate one day
using the 2.5° longitude, 20 latitude, 29 layer version of the model running on a CRAY T3E-600
with 2 chemically active species (CFCs). In each of the Tables below we present (in addition to
the timings for particular kernels) the total model execution time; note that this time succesively
decreases as each of the optimizations is included. The starting point for these total times (125
seconds/simulated day) corresponds to a version of the code that uses: i) the original
implementation of the vertical discretization code, the load balanced filtering code of Lou and
Farrara [17], the multi-column implementation of the Harshvardhan [10, 11] longwave radiation
code (including calls to assembler coded special functions) and the standard Arakawa-Schubert [7,
8] cumulus convection parameterization.

a. AGCM/Dynamics kernels
i) Vertical discretization

The vertical differencing is computationally demanding because it requires the calculation at
every timestep of several functions of pressure involving exponentials and real numbers raised to a
real power. To reduce the impact of computing these expensive special functions we are using
vectorized assembly-coded routines to perform these operations (Drummond et al [22]). The
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reduction in execution time obtained is given in Table 1. The impact on the time spent in the
vertical differencing is substantial (40% reduction), but the overall run time is only marginally
improved.

Table 1. Vertical Discretization Time (seconds/simulated day).

~Original Implementation With assembler-coded
special functions
| Vertical discretization time 5.25 3.12
Total model execution time 125 123

ii) Polar filtering

Lou and Farrara (1996) describe a load-balancing scheme for the filtering which is based on evenly
distributing complete longitude-height slices of fields to be filtered among all processors. When
large numbers of processors are used the load redistribution with this method becomes poor as the
number of processors can be nearly as large or larger than the number of slices to be filtered.
Therefore, we have modified this scheme to break up these longitude-height slices and redistribute
individual longitudes (rows) of data. This resuits in a larger number of units of work to be
redistributed, giving a better load balance on large numbers of processors. This can be seen in
Table 2 which give the timings of the original load-balanced filtering and the revised load-balanced
filtering algorithms. The time spent in filtering has been reduced by 40% resulting in a 10%
reduction in total execution time.

Table 2. Total Polar Filtering Time (seconds/simulated day).

~ Orniginal Load Balanced — Revised Load Balanced
Filtering [17] Filtering
“Filter time 20.5 12.3
— Total model execution time 123 114

b. AGCM/Physics kernels
i) Terrestrial Radiation

The exponential and real raised to a real power operations, as in the vertical discretization, are the
most expensive operations in the terrestrial radiation. As in the vertical discretization code, we are
using vectorized assembler-coded routines to perform these operations. As indicated in Section 2c,
this code was originally structured for vector supercomputers, such that calculations were
performed on multiple atmospheric columns simultaneously. On machines such as the T3E, the
overhead in processing a set of instructions from a program is contributed primarily by the retrieval
of data from main memory into cache. In an attempt to minimize the traffic of data between cache
and main memory, we have re-written the terrestrial radiation code to operate on only a single
atmospheric column at a time, thereby reducing the sizes of many of the arrays used in this part of
the code and increasing substantially the cache reuse. The timing for the original and restructured
versions (assembler routine calls for special functions are used in both cases) of this code are given
in Table 3. Table 3 shows a reduction in time spent in the terrestrial radiation computation of
approximately 20% as well as a modest reduction in the overall time of about 4%.
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Table 3. Terrestrial Radiation Time (seconds/simulated day).

Multi-column (original)

§ingle-column

. _ Implementation Implementation
Terrestrial Radiation time 21.9 17.1
Total model execution time 114 110

ii) Cumulus convection

There are significant mathematical and computational drawbacks to the standard Arakawa-Schubert
curnulus parameterization we have been using (see Section 2). Therefore, we decided to replace it
with a revised version of the algorithm called "prognostic” Arakawa-Schubert (Randall and Pan
[21]). In this "prognostic” version, the CWF quasi-equilibrium is relaxed by predicting the cloud-
scale kinetic energy. It has been shown (Randall and Pan [21]) that this prognostic version
reduces in principle to the CWF quasi-equilibrium as the dissipation time scale for the cloud kinetic
energy goes to zero. In practice, it has been found that the time-averaged cloud base mass flux,
and, therefore, time-averaged cumulus heating and drying are approximately the same as that
obtained with the standard AS parameterization. One of the main advantages of this approach is
that the difficulties and expense of simultaneously diagnosing a set of physically reasonable cloud
base mass fluxes that satisfy the CWF quasi-equilibrium are avoided. In this scheme, the predicted
CKE is used to simply determine the cloud base mass fluxes for each subensemble. A secondary
cause for the poor performance of the standard AS code is poor cache reuse; this problem is related
to the large number of arrays required to solve for the cloud base mass fluxes and becomes acute as
the number of vertical levels increases. This problem is also alleviated in the prognostic version as
the code is considerably simplified and the number of arrays is substantially reduced. The impact
on performance is huge (see Table 4); the prognostic AS is 6.5 times faster than the standard,
yielding a reduction in total execution time of 30%.

Table 4. Cumulus convection Time (seconds/simulated day).

_ _ Standard Arakawa-Schubert l-’rognostic Arakawa-Schubert
L Cumulus Time 39.8 i6.1
Total model execution time 110 76.5

c. Overall improvement

The overall reduction in execution time is 48.5 seconds per simulated day. The majority of this
improvement (33 seconds) was due to the use of the prognostic version of the Arakawa-Schubert
cumulus parameterization. However, the cumulative effect was the other optimizations was
significant, amounting to a reduction of more than 1.5 hours in the time required to simulate one
year (9.3 hrs --> 7.7 hrs). In addition to the above optimizations, we have found that using the
"streams" option on the T3E reduces the overall wall-clock time by additional 15%. However, a
hardware bug on the T3E-600 renders the machine unstable when this option is used in
conjunction with certain types of calls to the SHMEM library routines for transferring data among
processors. Therefore all the timings reported above are for runs that do not use this option.
Currently, the model code runs 4.4 times faster on the T3E than on the T3D, achieving a peak
performance of 35 Gflops on 512 T3E-600 nodes (see Fig. 2). On the T3E, the model code
executes approximately 8.5 times faster on 256 nodes than on 16 nodes (the smallest number of
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nodes that will run this size problem), resulting in a parallel efficiency of 53%. For this problem
size, the parallel efficiency drops off above 256 nodes. Clearly, higher efficiencies can be
achieved for higher resolution configurations. Our future work will center on optimizing the ACM
portion of the code as this part of the code becomes absolutely dominant when, for example, a 25
species configuration appropriate for the study of stratospheric ozone is used (see Figure 3).

4. Coupling to an ocean GCM

As indicated in Section 2a, the AGCM consists of two major components, AGCM/Dynamics and
AGCM/Physics. The ocean general circulation model (OGCM) also has two major components:
OGCM/Baroclinic, which determines the deviations from the vertically averaged velocity,
temperature and salinity fields, and OGCM/Barotropic, which determines the vertically averaged
distributions of those fields. When run on a single node, the AGCM and OGCM codes execute
sequentially and exchange fields corresponding to the air-sea interface. The AGCM is first
integrated for a fixed period of time and then transfers the time-averaged surface wind stress, heat
and water fluxes to the OGCM. This component is then integrated for the same period of time and
transfers the sea surface temperature to the AGCM. When run on multiple processors, a scheme
that allows the two codes to run in parallel is used. Because AGCM/Dynamics does not exchange
data with the OGCM, these components can run in parallel. Further, AGCM/Physics can start as
soon as OGCM/Baroclinic completes its calculation, because this includes the sea surface
temperature, and can thus run in parallel with OGCM/Barotropic. The efficiency of this scheme
depends primarily on having a good balance between the run times for the components running in
parallel.

To optimize the required gathering and scattering of fields between different data distributed
models we have designed a distributed Data Broker. The Data Broker is designed such that the
problem of efficiently coupling model components is been broken up into a small number of
relatively independent and reusable kernels, consisting of a Registration Broker, model specific
Interpolation routines, and model communications libraries (see Figure 2). The Registration
Broker keeps track of the production of, and requests for, multi-dimensional data and their
frequencies of production/consumption. The distributed producers and consumers communicate
with the Data Broker via the model communications library, which in tumn arranges for the
appropriate pieces to be transmitted by each of the distributed "producers' of the fields to each of
the distributed 'consumers’. In contrast to the code of the component models, which is 99%
FORTRAN, the Data Broker is implemented using C++ and tcltk with a FORTRAN-callable
interface.

5. Summary

Computer simulations using GCMs are indispensible in studies of the fundamental issues that
affect our environment. Such simulations are very demanding of computer resources and eptomize
the challenge of Earth Sciences to computer technology. We have addressed this challenge by
developing a coupled atmosphere/ocean/chemistry model that makes efficient use of one of today's
highest performing computing environments (the CRAY T3E). One of the scientific issues we
plan to address with the coupled AGCM/OGCM configuration of this model is the decadal
modulation of El Nifio-Southern Oscillation events. For this investigation, we require coupled
simulations at least several decades or even a century long. To date, available resources have
limited us to multi-decadal simulations using a medium range of resolution (for example, the
AGCM resolution was coarser than that timed here). With the newly optimized versions of the
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model codes, we plan to run century-long coupled simulations using higher resolution for both the
AGCM and OGCM. When the results of our current optimization work targeting the ACM are
complete we plan investigations of the stratospheric ozone layer. For this, we will perform multi-
decadal simulations with the AGCM/ACM at the same high resolution and using the 25 chemical
species required to accurately simulate the evolution of ozone in the stratosphere.
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AGCM
Main Loop

Figure 1. A schematic of the structure of the AGCM code. The main components are the Physics and
Hydrodynamics (or, as in the text, Dynamics).
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Figure 2. Performance of the AGCM/ACM on the T3D and T3E as a function of number of processors.
On the T3E the model code executes approximately 8.5 times faster on 256 nodes than on 16 nodes
(smallest number that will fit this size problem), resulting in a parallel efficiency of 53%. For this
problem size, the parallel efficiency decreases rather rapidly above 256 nodes. The FLOPs were counted
using the Apprentice toolkit on the T3D.
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Figure 3. AGCM/ACM timings (expressed in seconds/simulated day) for two different configurations of
the ACM. The lower curve corresponds to the configuration using with 2 photochemically active species
(CFCs); the timings for this configuration is not very different from those for the AGCM alone. The
upper curve corresponds to a configuration involving the 25 species required to simulation the evolution
of stratospheric ozone. In this case, the ACM execution time becomes absolutely dominant as the total
execution time is more than one order of magnitude greater in this case.
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Figure 4. A schematic of the AGCM/OGCM/ACM coupled using the "Data Broker". A model
communication library interface (MCL) allows the code components to exchange field variables with
other components without knowing the details of how data are distributed for the other components. The
communication library (CL) interface and the registration broker (RB) perform the function of moving
data to/from the models. Finally, interpolation and extrapolation routines (I) are available for each
model. These routines perform the various mappings and/or transformations of data from different grids
or units to the desired representation.
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Co-array Fortran [1], formerly known as F2,3,4,5,6], is a simple extension to Fortran 90/95,
which uses a second set of array subscripts to address that array in different processes. Co-array
Fortran is very close in spirit to the one-sided message-passing library (SHMEM) and can be
thought of as syntax for the one-sided get/put model that is incorporated into the Fortran language.
It adopts a Single-Program-Multiple-Data (SPMD) programming model, in which a single program
is replicated to a number of images, each with its own local data. Within each image, the normal
rules of Fortran apply, as if it were a single program. Each image has a unique index associated

with it and executes asynchronously. The programmer uses explicit synchronization procedures as
needed.

Communication between images is done through a new type of object called a co-array. A co-array

is a variable declared with dimensions in square brackets instead of, or in addition to, the
dimensions declared with parentheses. Array indices in square brackets provide a convenient
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notation for accessing objects across images, and follow similar rules to ordinary Fortran array
indices. A co-array is declared or allocated with an asterisk for its final dimension and it always has
size equal to the number of images. A reference to a co-array with no square brackets attached to it
is a reference to the object in the local memory of the executing image. When communication is
needed, the programmer uses the image number of the remote image in the square brackets to
generate a reference to an object in the remote image. For example, the statement

real, dimension(n)[*]:: X,¥
creates two real arrays of size n in each image. Because of the square brackets, these arrays are
also co-arrays. The statement

x(5)=y(5) [ql
copies the value of y(5) in image g to the local value x(5) in the image that executes the
statement. Local variables become globally visible only through co-array syntax.

Co-array syntax is more flexible than libraries or directives because it allows arbitrary Fortran
90/95 variable types and arbitrary communication patterns. For example, if different sizes are
required on different images, a co-array may be declared of a derived type with a component that is
a pointer array. The pointer component is allocated on each image to have the desired size for that
image (or not allocated at all, if it is not needed on the image). The statement

x(:) = alpl%ptr(:)
means 'Go to image p, obtain the pointer component of variable a, read from the corresponding
pointee, and place that data in the local array x'. This flexibility may be the key to difficult
problems such as adaptive mesh refinement.

Each image has its own independent /O units. A file may be opened on one image when it is
already open on another. For all units (except those identified by * in a READ or WRITE
statement) each image positions each file independently. If file access order matters, the
programmer needs to synchronize explicitly.

Most atmospheric and ocean models are parallelized using domain decomposition. Co-array
Fortran is a natural representation of domain decomposition and provides a simple and efficient
way to parallelize these codes. Consider the calculation of the maximum value of a co-array:
subroutine greatest(a,great)
! find maximum value of a(:)[*]

real, intent (in) :: a(:)[*]
real, intent (out) :: great([*]
real :: work(num_images()) ! local work array
great = max(a(:)) ! find max of local data
call sync_images ()
if (this_image(great) == 1) then
work=great|[:] ! gather local max from other
images
great[:] =max{(work) ! scatter global max to all images
end if
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end subroutine greatest

Next, consider the task of each image getting a piece of a global array from the ‘master” image:
subroutine splat(xglobal, xlocal, lev, master)
include ‘dimensions.h’
real xglobal (-nbdy+1:I_max+nbdy, -nbdy+l:j_max+nbdy) [0:1]
real xlocal (-nbdy+1l:idm+nbdy, -nbdy+1l:jdm+nbdy, lev)
integer lev, master

if (me.eqg.master) then
do 10 j=l-nbdy,jj+nbdy
do 10 i=1l-nbdy,ii+nbdy
xlocal(i,j,lev)=xglobal (i+istart-1,j+jstart-1)
10 continue
else
do 20 j=1l-nbdy, jj+nbdy
do 20 i=l-nbdy,ii+nbdy
xlocal(I,j,lev)=xglobal (i+istart-1,j+jstart-1) [master]
20 continue
endif

return
end

Other examples of tasks common to this class of applications will be presented.

Portions of co-array Fortran have been incorporated into the SGI F90 compiler (versions 7.2 and
7.2.1) and the message-passing version of MICOM has been converted to use co-array Fortran.
Performance of MICOM using co-array Fortran will be compared to that achieved with other
programming models on SGI/Cray systems.
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Introduction

We are often asked by applications programmers, "What exactly is a metasystem, and why should I care?”
This paper attempts to answer this question from an applications perspective, pointing out concrete ways in
which the current practices of high performance scientific computing can possibly be improved.

What Is A Metasystem?

Before we can answer the chalienge posed by the title of this paper, we need to define what a metasystem
is. Physically, a metasystem is a collection of geographically separated resources (people, computers,
instruments, databases) connected by a high speed network. A metasystem is distinguished from a simple
collection of computers by a software layer, often called middleware, which transforms a collection of
independent resources into a single, coherent, virtual machine. This machine should be as simple to use as
the machine on the users desktop, and should allow easy collaboration between colleagues located

anywhere in the world.

What is the problem with today’s collections of computers? A typical researcher using machines at multiple
sites faces the problem of slightly or radically different software environments, separatefilesystems which

require frequent copying of files between sites, security policies which prohibit transfer of files between
sites without a human typing in a password, and so forth.

So why dont we have metasystems today? As usual, the fundamental difficulty is software, specifically an
inadequate model of ‘systems software” for the worldwide collection of computer systems. Faced with the

eternal rush of new hardware, the computing community has stretched existing models - interacting but
autonomous computers — to a level where this model breaks down. The result is a collection of
incompatible, incomplete solutions which work well in isolation, but do not work together nor scale for the
future.

Our vision of a metasystemf] is of a system containing thousands of computers and terabytes of data in a
Joose confederation, tied together by high-speed networks. The user will have the illusion of a very
powerful computer on her desk, and will manipulate objects representing data resources such as databases
of physical data, applications such as physical simulations and visualization tools, and physical devices
such as scientific instruments. To allow the construction of shared workspaces, these objects may be
securely shared with other users.

It is the metasystems responsibility to support this illusion of a single machine by transparently

managing data movement, caching, and conversion; detecting and managing faults; ensuring that the user’
data and physical resources are adequately protected, and scheduling application components on the
resources available to the user.

269



The potential benefits of a metasystem to the scientific community are enormous:

e more effective collaboration, by putting co-workers in the same virtual workplace,
o higher application performance due to parallel execution and exploitation of off-site resources,
o improved productivity through a considerably simpler programming environment.

The next section of this paper will introduce an example application, which we will use in the subsequent
section to illustrate the benefits of the major subsystems of the Legion metacomputing system.

Figure 1. Our vision is to construct a shared, high-performance, secure, and fault tolerant computation:
environment for scientists and engineers. The resulting environment will enhance the productivity of the
scientific community.

Example — Multi-Scale Climate Modeling

Climate modeling is an example of a field that can benefit greatly from metacomputing. Climate modeling
has progressed beyond atmospheric simulations to include multiple aspects of the Earth system, such as

full-depth ocean models, high-resolution land-surface models, sea ice models, chemistry models, and so

forth. Each component model generally requires a different resolution in space and time. We might even
wish to couple global and regional models. For example, an EINino study might involve coupling a global

climate code with a regional weather code.

Over the course of simulating a coupled system, the individual models must exchange data, such as
temperature, winds, and precipitation, and the execution of the entire system must be kept in
synchronization. The models often originate from different research groups around the world and may
even be written in different languages. As an additional complication, some models have parallel
implementations, often using different parallel toolkits.

With existing tools, coupling these models would be tedious and error-prone at best. Many parallel toolkits

are incompatible with each other, and do not support heterogeneous collections of systems. In the
metacomputing environment, the models couldinteroperate on the same or different machines, which need
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not be in close physical proximity. While this solves some of the problems of coupled climate models,
other difficulties remain. Fault tolerance and security are major issues. Many scientific models write restart
dump files at regular intervals, and can be restarted by hand after a system failure, but this is only a partial
solution. Constant restarting is an aggravation at best; at worst it is a waste of resources and researcher

time, as well as an invitation to error. Security problems, which can often be neglected inside a single
machine, are also potentially increased by use of far-flung resources.

A final issue is visualization. The larger and more complex the simulation, the more critical is the need for
visualization, in order for humans to be able to digest the enormous amount of data generated by high-
resolution scientific models. But it can be difficult to couple visualization tools to applications.

We are currently constructing such a multi-scale climate model as part of the NPACI ESS effort, linking
together the UCLA OGCM/AGCM code with a regional California code.

So What Can | do With a Metasystem?

Our initial description of a metasystem is rather vague and high-level. The real question for users is:
Whats in it for me? There are many ways to use the new capabilities that a metasystem provides. They

range from relatively simple use of Legion facilities to intricateusages which exploit Legion’ capabilities

to solve problems currently considered impossible. Below, we sketch out several uses of metasystem
technology, and the capabilities that these features add to your research.

Shared Persistent Object (file) Space

The simplest service a metasystem provides is location-transparent access to data files, which is usually
called a distributed filesystem. An ideal distributedfilesystem allows a user to access a file anywhere in the
world without knowing if the file is local or remote, and without involving her systems administrator.
Having a shared filesystem significantly simplifies collaboration.NFS is a well-known example of a
distributed filesystem[2]. However, NFS requires super-user configuration and has significant security
implications, so few users are able to use NFS to access remote data, or collaborate with colleagues in
remote locations. The World Wide Web provides a limited (read-only) distributed filesystem. Legion’

shared object space provides shared, secure access to data files without super-user configuration.

A more powerful model than shared files is shared object spaces. Instead of just sharing files, all entities —
programs, databases, instruments, etc. — can be named and shared between users. This merging of ‘files”
and ‘objects” is driven by the observation that the traditional distinction between files and other objects is
not necessary. Files represent persistent data, and happen to live on a disk, so files are slower than RAM,
but persist if the computer crashes. In a shared object space, a file object is any object which supports the
standard file operations, such as ‘fead” and “write”. In addition, the object interface can also define
additional properties such as its persistence, fault, synchronization, and performance characteristics. Not all
files need be the same; this eliminates the need to provide Unix synchronization semantics for all files,
since many applications simply do not require those semantics. Instead, special semantics can be selected
on a file-by-file basis, and even changed at run-time.

Beyond basic sequential files, persistent objects with flexible interfaces offer a range of opportunities,
including:

e Application-specific ‘file” interfaces . Instead of just read and write, a ‘2D array file” may also have
functions such as ‘read_column”, “read_row”, and “read_sub_array”. The advantage to the user is the
ability to interact with the file system in application terms — in this example a special object which
efficiently reads and writes 2D files — rather than just one-dimensional streams of bytes The
implementations of files can be optimized for a particular data structure, by storing the data in sub-
arrays, or by scattering the data to multiple devices to provide parallel /O. Note that these
characteristics can be set on a file-by-file basis, unlike most current parallelfilesystems.

271



e  User specification of caching and prefetch strategies. This feature allows the user to exploit
application domain knowledge about access patterns and locality to tailor the caching and prefetch
strategies to the application. For example, the user may know what data she might read minutes in
advance.

e Active simulations. In addition to passive files, persistent objects may also be active entities. For
example, a factory simulation can proceed at a specified pace (e.g., wall clock time) and can be
accessed (read) by other objects. Of course the factory simulation may itself use and manipulate other
objects.

Transparent Remote Execution

A slightly more complex service is that of transparent remote execution. Consider a user working on a
code. After setting up the initial data for a run, she is left with the problem of deciding where to execute the
code. She might choose to run it on her workstation (if it has sufficient resources), or on a local high
performance machine, or on a remote workstation farm, or on a remote supercomputer. The choice
involves many trade-offs. Which choice will result in the fastest turn-around? Today, a user must usually
check each potential machine by hand to guess the turn-around time.

Next, there are the inconveniences of using remote resources. Data and executable binaries may first need
to be physically copied to a remote center, and the results copied back for analysis and display. This may be
further complicated by the need to access input data from a collaborator. Finally, the user must recall how
to use the local queuing system; there are 25 different ones in use [3]. These inconveniences are usually so
great that most users pick one site and infrequently consider moving. Finally, there are the administrative
difficulties of acquiring and maintaining multiple accounts at multiple sites.

In a metasystem, the user can simply execute the application at the command line. The underlying system
selects an appropriate host from among those the user is authorized to use, transfers program binaries, and
begins execution. Data is transparently accessed from the shared persistent object space, and the results are

stored in the shared persistent object space for later use. A queuing system could be used, in order to create

a wide-area queuing system, extending today’s local queuing systems.

Wide-Area Parallel Processing

Another opportunity presented by metasystems is connecting multiple resources together for the purpose of
executing a single application, providing the opportunity to run problems of a much larger scale than would
otherwise be possible. Not all problems will be able to exploit this capability, since the application must
tolerate the latency involved in crossing a building or crossing the country.

First, lets consider a parameter space study. In a parameter space study, the same program is repeatedly
executed with slightly different parameters. The program may be sequential or parallel. For example, a
convergence study might involve running the same code repeatedly with different grid sizes, or with
slightly perturbed initial values. These sorts of problems are sometimes called ‘bag of tas " problems,
since all the runs are independent.

Bag-of-tasks problems are well suited to metasystems because they are highly latency tolerant. While one
computation is being performed, the results of the previous computation can be sent to the results bag, and
the parameters for the next computation can be retrieved from the input bag. Furthermore, the computations
can be easily spread to a large number of sites (using Legion’s remote execution capability), because the
computations do not interact in any way.
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Figure 2. Bag-of-tasks. The master places work units containing parameters for the workers into th
tasks bag. Workers take work from the bag, perform the required computation, place the results into
another bag, perhaps used by other workers as input, and retrieve another piece of work. This
continues until all of the work has been completed. Note that there may be more than one master.

Consider next a more complex class of problems, such as an extremely large ocean model’ Suppose that

we wish to use two distributed memory MPPs and a visualization system at different sites for a single run.
All 3 sites are connected by a fast network running at 155 megabits per second. (Figure 3). Further suppose
that the first host has twice as many processors as the second does. Balancing the load requires that the
problem be decomposed in such a manner that the first host has twice as much of the data as the second. (In
general, the scheduling problem can become extraordinarily complex, so a simple example is used here to
illustrate the point.)

0?3?5?0

Figure 3. Two geographically separated distributed memory MPP$ connected by a high-
speed link. The user sits at a visualization station at a third site. The hosts may be the same
or have different processors and interconnection networks

! Most ocean codes are 3D, but are decomposed in 2D.
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Boundary layer

Host 1 ' Host 2

Figure 4. One possible decomposition of a 2D grid between two MPP%. The thick
line represents the boundary layers that must be sent between hosts.

Given the decomposition shown above and information on the size of the zones, we can estimate the
bandwidth requirements of the communications channel. Suppose that the problem is 10,000 by 10,000
zones, and each zone communicates with its 4 immediate neighbors only once per cycle, and each zone
contains 100 bytes of data. Then one megabyte of data must be transferred over the wire in each direction
for each cycle. Assuming coast-to-coast communication and a 155 megabit channel, the time to transmit the
boundary layer is at least 50 ms. For some applications, such as those which use an implicit solver and
transfer information many times during a cycle, that is likely to be too long. But for others, 50 ms is
acceptable, especially if communication can overlap with computatioxﬁ

Meta-Applications

The most challenging class of applications for the metasystem is meta-applications. A meta-application is a
multi-component application, many of whose components were previously executed as stand-alone
applications.

Component 1 Component 2
Shared memory <> MPI/pC

Fortran

Component 3
Cray Fortran
_ (vector)

A generic example is shown above. In this example three previously stand-alone applications have been
connected together to form a larger, single application. Each of the components has hardware affinities.
Component 1 is a fine grain data parallel code that requires a tightly coupled machine such as anSGI

Origin 2000, component 2 is a coarse grain data parallel code that can run efficiently on a ‘pile of PCs”

2 Deciding the partition and placement of cells on processors can be difficult to get right if done by hand,
but fortunately there are tools for making those decisions [4]. The issue of dynamically changing the
partition and placement has not been solved.
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machine, and component 3 is a nonparallelized but vectorizable code that “wants” to run on a vector
machine such as Cray T90. Component 1 also uses a very large database that is physically located at site 1.
Component 3 is written with Cray Fortran extensions, component 1 is written inHPF, and component 2 is
written in C using MPI calls.

There are many difficult issues involved in this example. The first is that data is often geographically
distributed — it is often stored physically close to the people who collect it, not necessarily the people who

use it. Today’s coupled models usually require all the data to be copied to a single location. The challenge

to the metasystem is to help determine when it makes sense to move the computation to the data, and when
it makes sense to move the data to the computation,

Next, scheduling the meta-application onto the hardware is a significant challenge. Consider scheduling our
example meta-application on a single distributed memory machine. We would like each component to
progress at the same rate, so we might need to assign different numbers of processors to each. Second, the

component tasks must be mapped to the processors in such a manner as to reduce the communication load
— random placement may lead to communication bottlenecks. Finally, the computational requirements of
the components may vary over time, requiring dynamic re-partitioning of resources.

o PoRARERS

Component1 ,. -&:._{LE ,O
Componenté.) 8_ .[!Jg.{j_'] ,O ,O

oo TESTSILDILD

i N

Figure 6. One possible mapping of three data-parallel components onto an MPP.

Now suppose that instead of a fixed number of processors on an MPP to choose from, we must choose
between a large number of diverse systems, each connected to the others by networks of widely varying
capability’. It is easy to see that the scheduling problem is a significant challenge.

As the number of hosts and processors in a computation increase, the mean time to failure falls. Today's
large machines are less reliable than the machines used 5 years ago; collections of workstations have
always presented a fault tolerance challenge. The metasystem should provide transparent fault tolerance
whenever possible.

? Just determining network characteristics is non-trivial in a metasystem. Unlike an MPP, which is often not
shared, the wide-area network is usually shared, resulting in large variances in both bandwidth and latency.
Predicting network performance [5] is a critical componext of the metasystem scheduling problem.
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Summary

Metasystems technology is rapidly maturing. Three years ago at Supercomputing 95, the I-Way was a one-
time stunt that demonstrated a large number of applications that had been constructed in anad hoc fashion.
Today, metasystems testbeds are operational on a full-time basis. As the technology matures further and
becomes hardened enough for production use, we hope to see a significant increase in computational
scientists’productivity.

Metasystems will provide users with a transparent, distributed, shared, secure, and fault-tolerant
computational environment. With a metasystem, users will be able to share files, computational objects,
databases, and instruments. No longer will they have to manually decide where to execute their programs
and copy the necessary binaries and data files: the metasystem will do those jobs. New classes of
applications, meta-applications, will be enabled by the new infrastructure, further increasing users’
efficiency and productivity.
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1. Introduction. On previous generation MPP systems, interprocessor communi-
cation often represented a significant fraction of the runtime of production parallel
codes, and the choice of communication transport layer and communication protocol
were important steps in porting and tuning application codes. Processor, network,
and transport layer performance continue to improve, and the sensitivity of perfor-
mance to these implementation issues needs to be reexamined.

In this paper we use the PSTSWM parallel application code to examine

1) single processor performance,

2) peak achievable point-to-point communication performance,

3) performance variation of kernels as a function of communication protocols,

4) performance of vendor-supplied collective communication routines, and

5) performance sensitivity of full code to choice of parallel implementation
for the SGI/Cray Research T3E and Origin 2000, using both the MPI [2] and SHMEM
libraries to implement interprocessor communication. While other researchers have
looked at communication performance on these machines (e.g., [1]), this study differs
in that we examine the effect on peformance of an application code.

2. PSTSWM. The Parallel Spectral Transform Shallow Water Model (PSTSWM)
is a message-passing parallel benchmark code and parallel algorithm testbed that
solves the nonlinear shallow water equations on a rotating sphere using the spectral
transform method. PSTSWM was developed by the author and by I. T. Foster at
Argonne National Laboratory from the serial code STSWM, written by J. J. Hack and
R. Jakob at the National Center for Atmospheric Research. PSTSWM was used to
evaluate parallel algorithms for the spectral transform method as it is used in global
atmospheric circulation models.

PSTSWM has characteristics that make it useful for performance studies. It makes
interesting and varied demands on the communication subsystem, multiple parallel
algorithms are embedded in the code, and multiple message-passing transport layers
are supported. See http://www.epm.ornl.gov/chammp/pstswm/index.html for a
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partial bibliography of the performance studies utilizing PSTSWM.

3. Platforms. We focus on the T3E and Origin2000 in these studies, but include
measurements from the following platforms to aid in the understanding of the results.

Intel Paragon XP/S 150 at Oak Ridge National Laboratory.

This machine has 1024 MP nodes (3 50-MHz iPSC/860 processors per node).
Measurements were taken in January, 1998. Only one processor per node was
used for computation. KAI math routines were used.

CRI T3D at Cray Research in Eagen, MN.

This machine had 128 150-MHz DEC Alpha EV4 processors. Measurements were
taken in August, 1996.

IBM SP2 at NASA Ames Research Center.

This machine had 160 RS6000/590 nodes (”wide”, 66.7 MHz POWER2). Mea-
surements were taken in August, 1996. ESSL math routines were used.

Convez SPP-1200 at the National Center for Supercomputer Applications.

This machine has 64 120-MHz HP PA-RISC 7200 processors (8 Hypernodes).
Measurements were taken in September, 1996.

SGI/CR T38E-900 at the National Energy Research Scientific Computing Center.
This machine has 532 450-MHz DEC Alpha EV5 RISC processors. Measurements
were taken in January, 1998.

HP/CONVEX SPP-2000 at the National Center for Supercomputer Applications.
This machine has 64 180-MHz HP PA-RISC 8000 processors (4 Hypernodes).
Measurements were taken in April, 1998. VECLIB math routines were used.

Intel PII-266 cluster at Oak Ridge National Laboratory.

This machine has 10 266-MHz dual Pentium II nodes. Measurements were taken
in February, 1998. LINUX and Portland Group f77 compiler were used.

SGI/CR Origin2000 at Los Alamos National Laboratory.

This machine has 128 195-MHz MIPS R10000 processors. Measurements were
last taken in April, 1998. SCSL math routines were used.

4. Serial Performance. Table 1 contains the MFlop/sec rates for one processor runs
of the code PSTSWM for a number of different problem sizes. PSTSWM computes
the solution by timestepping, advancing the approximation to a new timelevel (in
simulation time) by using the approximations at the two previous timelevels. The
computational complexity and code executed for a timestep in PSTSWM are identical
for all timesteps.

We use the standard benchmark problem for the shallow water equations, global
steady state nonlinear zonal geostrophic flow (3], and two problem size classes: T42
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and T85, characterized by the following computational grids and complexity.

] physical grid ] Fourier grid | spectral coefficients l flops per timestep l
T42 | 64 x 128 64 x 64 946 4129859
T85 | 128 x 256 128 x 128 3741 24235477

There is also a vertical component to the problem size. For example, T42L16 is a
T42 horizontal grid with 16 vertical levels. The complexity of solving the problem is
linear in the number of vertical levels.

64-bit precision floating point computation is used in all experiments. Math library
routines are used for the Fourier transforms where available, as indicated in the
description of the platforms in the previous section.

T42L1 T42L3 T42L16 T85L1 T8&5L3
Intel Paragon 13.9 14.0 13.9 13.1 13.1
CRI T3D 25.2 25.7 23.3 24.9 24.4
IBM SP2 98.3 98.3 91.0 107.7 1024
Convex SPP-1200 24.9 23.2 22.9 24.2 24.0
SGI/CR T3E-900 79.4 70.0 64.1 84.7 70.7
HP/Convex SPP-2000 | 138.8 107.3 83.5 117.5 114.2
Intel PII-266 cluster 454 37.2 30.3 38.9 33.7
SGI/CR Origin2000 153.0 140.8 925 131.7 130.1

TABLE 1

Serial MFlop/sec rates.

From this data it is clear that the serial performance of MPP processors has generally
improved over the past few years, and that optimized math libraries are important
performance enhancers. Also note that some effects of the memory hierarchy on
performance can be observed from the variation in MFlop/sec rate as the problem
size varies.

5. Point-to-Point Communication Performance. Communication overhead is
best measured in the context of the full code, but it is useful to establish a per-
formance baseline by determining the “peak achieveable” point-to-point interpro-
cessor communication performance. Performance-critical interprocessor communica-
tion in PSTSWM is implemented using two basic types of commands: SWAP and
SENDRECYV. The message-passing transport layer used to implement these com-
mands is specified at compile time, while the protocol used is specified at runtime.
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To characterize the basic communication capabilities in terms relevant to PSTSWM,
we use the PSTSWM SWAP command. We measure the time required to exchange
262144 64-bit floating point numbers between two neighboring processors, varying
the protocol used for the exchange to find the minimum. We refer to these as the
2MB experiments. We also measure the time to swap 1024 and 16384 64-bit values,
referring to these as the 8KB and 128KB experiments, respectively.

Two general classes of protocols are used: unordered (ping-ping) and ordered (ping-
pong). While not all protocols are available for all message-passing transport layers,
they are drawn from those described in Table 2. Examples are given using MPI
commands. Note that the examples have been simplified (to save room) and do not
accurately represent the MPI implementations.

Table 3 contains the maximum observed bandwidth and typical SWAP overhead (“la-
tency”) for the corresponding communication protocol. (Note that this protocol does
not necessarily have the smallest latency.) The following observations on communi-
cation performance on the T3E and the Origin2000 can be drawn from this summary
data:

e The T3E and the Origin2000 demonstrate significant performance improvement
over previous generation MPPs of like architecture. (Note however that the SPP-
2000 performance is better than both, for these particular tests.)

e SHMEM achieves considerably higher bandwidth and lower latency than MPI,
but MPI performance is still an improvement over what was achieveable on earlier
systems.

Looking at the raw timing data, we can also determine the sensitivity of performance
to the choice of communication protocol. On the T3E the achievable bandwidth
shows little sensitivity to the communication protocol when using MPI, and the sim-
ple protocols are generally slightly better. On the Origin2000, MPI performance is
somewhat more sensitive to the communication protocol, but the communication pro-
tocol is still not too important. This is a significant difference from earlier results on
the Intel Paragon and the IBM SP2, but is similar to the T3D results, and appears
to reflect the SGI/CR implementation of MPI. When using SHMEM, the variability
is higher (for both systems).

6. Parallel Algorithm Performance. Some indication of the impact of communi-
cation protocol on performance can be seen from the point-to-point communication
tests, but it is difficult to use these results to predict the effect on application code
performance. Here we examine this issue in more detail, looking at the effect on the
performance of specific parallel algorithm options in PSTSWM.
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(0,0):

(0,1):

(0,2):

(0,3):

(0,4):

(0,5):

(0,6):

Unordered

simple
Processors 1 and 2
MPI.BSEND
MPI_RECV
nonblocking send
Processors 1 and 2
MPIISEND
MPIRECV
nonblocking receive
Processors 1 and 2
MPIIRECV
MPI_SEND
nonblocking send & receive

Processors 1 and 2
MPIIRECV
MPI_ISEND

ready send
Processors 1 and 2
MPIIRECV
MPI.RSEND

nonblocking ready send
Processors 1 and 2
MPLIRECVY
MPI_IRSEND

native sendrecv
Processors 1 and 2
MPISENDRECV

(1,0):

(1,1):

(1,2):

(1,3):

(1,4):

(1,5):

(1,4):

TABLE 2
SWAP protocols (simplified).
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Ordered

simple
Processor 1  Processor 2
MPISEND MPIRECV
MPI.RECV MPISEND
nonblocking send
Processor 1  Processor 2
MPILISEND MPIRECV
MPI.RECV MPISEND
nonblocking receive
Processor 1 Processor 2
MPIIRECV MPIRECV
MPISEND MPISEND
nonblocking send & receive
Processor 1  Processor 2
MPIITRECV MPIRECV
MPIISEND MPISEND
ready send
Processor 1 Processor 2
MPIIRECY MPIRECV
MPI_RSEND MPI.RSEND
nonblocking ready send
Processor 1 Processor 2
MPITRECV  MPIRECV
MPIIRSEND MPIRSEND

synchronous

Processor 2
MPI_RECV

MPI_SEND

Processor 1
MPI_SEND

MPIL.RECV



Unordered
2MB 128KB 8KB

BW lat. prot. | BW lat. prot. | BW lat. prot.
Paragon
: MPI 73 82 (06)| 70 136 (03) | 48 139 (0,3)
: NX 76 32 (03)| 71 8 (03)]| 57 T4 (0,3)
: SUNMOS | 293 63 (0,3)| — — — - - —
T3D
:SHMEM {183 19 (02| — — — - — —
SP2 .
: MPI 9 136 ©04)| — — — - - —
SPP-1200
: MPI 45 104 (04) | — — — - - —
T3E-900
: MPI 286 30 (0,2)|245 24 (0,0)| 66 25 (0,2)
:SHMEM | 543 7 (0,1)}49%4 7 (0,1)| 258 7 o,1)
SPP-2000
: MPI 654 39 (06)|629 15 (06) | 145 23 (02)
Origin2000
: MPI 142 39 (0,1)| 128 29 (06)| 57 30 (01)
.SHMEM | 287 15 (0,1)|222 14 (01)| 114 12 (0,2)

Ordered
2MB 128KB 8KB

BW lat. prot. | BW lat. prot. | BW lat. prot.
Paragon
: MPI 118 75 (1,00 | 107 105 (1,3) | 52 82 (1,0)
: NX 118 5 (1,00 114 62 (1,00} 73 52 (1,0
: SUNMOS | 154 35 (1,00 | — — — - = =
T3D
:SHMEM | 126 12 (1,2)| — — — - — —
SP2
: MPI 71 1 1) — — — - = =
SPP-1200
: MP1 29 27 (1,3)| — — — - = =
T3E-900
: MP1 163 29 (16) | 134 20 (1,00 ] 47 21 (1,0
.SHMEM |33 9 (1,2)]340 5 (12)}210 5 (1,2
SPP-2000
: MPI 541 20 (1,0)|547 9 (1,00] 158 5 (1,0
Origin2000
: MPI 126 33 (1,5 ] 98 17 (1,3)| 40 17 (1,0)
.SHMEM |16 8 (1,1){140 8 (L,1)| 71 10 (1,2)

TABLE 3
Peak observed bandwidth (MBytes/sec) and latency (microseconds) for optimal protocol.
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In the spectral transform method used in PSTSWM, fields are transformed at each
timestep between the physical (longitude-latitude-vertical) domain and the Fourier
(wavenumber-latitude-vertical) domain using Fourier transforms in the longitude di-
rection, and between the Fourier and spectral (spectral coefficients - vertical) do-
mains using a Legendre transform in the latitude direction. All parallel algorithms
in PSTSWM are based on decomposing the different computational domains onto
a logical two-dimensional grid of processors, PXxXPY. In each domain, two of the
domain dimensions are decomposed across the processor grid, for example, assign-
ing longitude-latitude patches of the physical domain to individual processors, but
leaving one domain dimension undecomposed.

Two general types of parallel algorithms are used in PSTSWM: transpose and dis-
tributed. In a transpose algorithm, the decomposition is “rotated” before a transform
begins, to ensure that all data needed to compute a particular transform is local to a
single processor. In a distributed algorithm the original decomposition of the domain
is retained, and communication is performed to allow the processors to cooperate in
the calculation of a transform.

Three transpose algorithms are examined, each of which is functionally equivalent to
MPI_ALLTOALLV:

e srtrans: sends P-1 messages using SENDRECYV to transpose across P processors;

e swtrans: sends P-1 messages using SWAP to transpose across P processors;

e logtrans: sends ©(log P) messages using SWAP to transpose across P processors.
Each of these are options for both the parallel Fourier and parallel Legendre trans-
form algorithms. Here we restrict our study to transpose-based parallel Fast Fourier
transform algorithms. One distributed Fast Fourier transform is also examined:

o dfft: sends ©(logP) messages using SWAP to calculate Fourier transform dis-

tributed across P processors.

The distributed Legendre transform algorithms in PSTSWM are based on the evalua-
tion of distributed vector sums. Four distributed vector sum algorithms are examined,
the first three of which are functionally equivalent to MPI_ ALLREDUCE:

e exchsum: an exchange-based algorithm implemented using SWAP;
halfsum: a recursive halving-based algorithm implemented using SWAP;
ringsum: a ring-based algorithm implemented using SENDRECV;
ringpipe: a pipeline-based algorithm implemented using SENDRECV.

Each of these algorithms can be implemented using the protocols described in Ta-
ble 2. Two different types of implementations are also supported. The first uses the
basic SWAP and SENDRECV commands to exchange the data. The second reorders
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the elements of the SWAP or SENDRECV protocol in an attempt to overlap com-
munication with computation and to hide communication latency. These algorithms
and protocols are described in more detail in [5]. The overlap algorithms using un-
ordered and ordered communication protocols will be designated by (2,z) and (3,z)
respectively, where z € {1,2,3,4,5,6}.

To examine the performance issues in these different implementation options, we run
the following experiments. We use one-dimensional decompositions of the form 8x1 or
1x8 and 32x1 or 1x32, where the first decomposition in each pair is for examining par-
allel Fourier transform algorithms, and the second is for examining parallel Lengendre
transform algorithms. The problem sizes are based on T42L16 and T85L32 as they
would appear on a two-dimensional processor grid of size 8x8, 16x32, or 32x16. This
is accomplished by modifying the problem size to achieve the desired granularity
(problem size per processor), and allows us to examine the performance for problem
granularities that are typical of what would be seen in practice.

Results are presented in Table 4. The first column is the overall best protocol for each
parallel algorithm. Multiple protocols are given when no single protocol is good for all
problem sizes and numbers of processors. The other columns indicate how much per-
formance is lost by using the MPI_ SENDRECV-based protocol instead of the optimal
MPI protocol and by using the optimal MPI protocol instead of the optimal SHMEM
protocol. Note that these are total runtimes, and that the indicated performance loss
is a function of both the size of the messages and the communication/computation
ratio for a given experiment.

From this data it is clear that there is no reason to use anything but (0,6) on the T3E if
using MPI, but that significant performance gains are possible if the SHMEM library
is used instead. Note that, unlike with MPI, the overlap algorithms are optimal for
some of the SHMEM experiments, indicating that overlap logic can be useful with
this architecture if the message-passing library supports it.

On the Origin2000, the conclusions are less clear. While (0,6) is rarely optimal, it is
a good choice for all but a few cases. For those few cases, however, it should not be
used. Similarly, MPI is competitive with (or better than) SHMEM in most cases, but
MPI performs much worse than SHMEM for som:= of the smaller granularity cases.

7. Full Simulation Performance. Efficient parallelizations of PSTSWM exploit
two-dimensional decompositions of the domain, parallelizing both the Fourier and
Legendre transforms. Here we consider two classes of parallel algorithms.

e DTH: double transpose for the Fourier transform and halfsum for the Legendre
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T3E

opt. protocols 40.6).mpi—topt.mpi 'Zp‘t:::’"m"i fopt.mpi ~Lopt.shmem ‘;’o:f;’m‘e:’“‘”‘
P=8 | P=32 | P=8 | P=3
T42 | T85 | T42 | T85 | T42 | T85 | T42 | T85
dfit (0,6),(22) | 0% | 8% | 0% | 0% | 18% | 6% | 54% | 18%
exchsum (0,6) 0% | 0% | 0% | 0% | 7% | 3% | 30% | 16%
halfsum (0,6) 0% | 0% | 0% | 0% | 7% | 2% | 39% |11%
logtrans (0,6) 0% | 0% | 1% | 0% | 16% | 7% | 82% | 20%
ringpipe (0,6) 0% | 0% | 0% | 0% | 14% | 4% | 75% | 39%
ringsum (0,6) 0% | 0% | 0% | 0% | 11% | 3% | 87% | 24%
srtrans (0,6) 2% | 0% | 0% | 0% | 17% | 5% | 121% | 27%
swtrans (0,6) 1% | 0% | 0% | 0% | 17% | 5% | 143% | 29%
Origin2000
opt. protocols 40.6).mpi ~toptmpi ‘Zpi::i""“““ fopt.mpi—topt.shmem ';'og:::m::“““’
P=38 P =32 P=28 P =32
T42 | T85 | T42 | T85 | T42 | T85 | T42 | T85
dffe 0.1),33) | 1% | 22% | 0% | 10% | 7% | 7% | -4% | -10%
exchsum | (0,4),(06) | 0% |20% | 0% | 48% | -4% | 0% | -11% | 32%
halfsum | (0,1),0,5) | 1% | 0% | 5% |27% | 3% | 2% | 5% | -5%
logtrans (0,6),(1,1) [0% | 9% | 0% | 3% | 6% | 14% | 59% | 23%
ringpipe (2,1),(2,2) 6% | 4% | 1% | 3% | 0% | -5% | 8% | 3%
ringsum (0,1) 2% 1 1% | 1% | 4% | 0% | -9% | 93% | -T%
srtrans (0,1) 0% | 0% | 0% | 1% | -1% | -3% | 115% | 35%
swtrans (0,1) 1% | 0% | 0% | 1% | 0% | -3% | 116% | 37%
TABLE 4

Effect of protocol on performance of parallel algorithms.

transform. The double transpose algorithm uses a transpose to serialize the
Fourier transforms, then another transpose to return to a domain decomposition
analogous to the original. This approach has the best load balance among the
parallel algorithm options. halfsum is the best MPI_ ALLREDUCE-equivalent
algorithm on the T3E and the Origin2000.
e DR: dfft/ringpipe. This parallel aglorithm combination has good load balance,
requires the minimum storage, and has the maximum potential for communica-

tion/computation overlap.

DTH and DR stress the underlying transport mechanisms in significantly different
ways, and represent different tests of the communication protocol sensitivity. Due to
their good load balances, the performance differences between them reflect primarily
the differences in communication costs.

285




For each platform we measure the runtimes when solving T42L16 and T85L16 using
e opt: the best transpose algorithms (for DTH) and the best communication pro-
tocols for each parallel algorithm, determined empirically,
e gen: srtrans (for DTH) and (0,6)-based parallel implementations, and
e coll: MPI collective communication routines MPI_ALLTOALLV and
MPI_REDUCEALL (for DTH),

for logical processor meshes of sizes: 4 x 4, 4 x 8, 8 x 8, 8 x 16, 16 x 16, and 16 x 32.
Algorithms gen and coll represent the typical algorithm choices if nothing is known
about the communication protocol sensitivities. Measurements are also taken using
8 x 14 for DR and 14 x 8 for DTH, since the 128 processor experiments do not run
efficiently on a 128 processor Origin2000 (due to competition with system processes).

Results are presented in Table 5. The optimal times are given for both MPI and
SHMEM implementations. Additionally, the performance degradation (if any) is
given for using the gen and coll implementations instead of the optimal MPI imple-
mentation.

e T3SE results. For DTH, gen is the best MPI implementation except for the
smallest granularity cases. In those two cases collis the best, but coll is an erratic
performer in general. For DR, gen is never the best, and it is worthwhile searching
for the optimal MPI protocol. But the optimal SHMEM implementations are
faster than the optimal MPI implementations in all cases, and often significantly
SO.

o Origin2000 results. For DTH, gen is a reasonable choice for the T42L.16 cases,
but the optimal MPI protocols are worth identifying for the T85L16 cases. collis
never a good choice. For DR, gen is a poor choice, and it is worthwhile searching
for the optimal MPI protocols. The optimal SHMEM implementations are faster
than the optimal MPI implementations only for the largest granularity cases. In
the other cases, the optimal MPI implementations are consistently better.

8. Summary. Both the T3E and the Origin2000 results indicate the importance
of considering the interprocessor communication protocols when tuning performance,
but the similarity in the results ends there. On the T3E, performance is optimized by
using the SHMEM communication library. On the Origin2000, optimization should
include both the communication library (MPI or SHMEM) and the particular protocol
used in the implementation. Disappointingly, the collective communication-based
implementation coll is not competitive on either platform, which is consistent with
earlier evaluations on other parallel platforms [4].
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T3E
alg. prot. library | 4x4 4x8 8x8 8x14 8x16 16x16 16 x 32

T42L16 runtimes
DTH opt MPI 309 148 7.4 4.5 4.1 2.5 2.0
opt SHMEM | 296 139 6.5 3.5 3.2 2.0 1.2

DR opt MPI 236 125 7.3 6.9 5.7 44 -
opt SHMEM | 222 112 6.0 5.2 4.0 2.8 -
T85L16 runtimes
DTH opt MPI 311.3 149.8 69.8 38.6 36.2 20.6 124
opt SHMEM | 3046 1443 656 36.4 334 17.0 9.4
DR opt MPI 2289 1163 61.7 39.1 374 21.5 18.9
opt SHMEM | 221.1 1108 570 35.7 29.5 16.9 12.6
T42L16 MPI performance sensitivity
0% 0% 3% 0% 0% 17% 13%
1% 5% 0% ™% % 0% 0%
5% 8% 3% 2% 4% 2% -
T85L16 MPI performance sensitivity
0% 0% 0% 0% 0% 0% 0%
1% 6% 5% 17% 16% 2% 23%
12% 7% 4% 4% % 8% 7%

Origin2000
alg. prot. library |4x4 4x8 8x8 8x14 8x16 16x16 16x 32
T42L16 runtimes

DTH opt MPI 17.5 99 5.9 4.9 - - -
opt SHMEM | 18.7 104 6.0 - - - -

DR opt MPI 183 103 6.8 6.2 - - -
opt SHMEM | 186 10.6 7.2 7.6 - - -

T85L16 runtimes

DTH opt MPI 2509 1264 525 426 - - -
opt SHMEM | 244.1 112.7 548 - - - -

DR opt MPI 250.6 1225 56.2 40.1 - - -
opt SHMEM | 234.0 1048 564 54.5 - - -

T42L16 MPI performance sensitivity

DTH gen MPI 0% 1% 3% 4% - - -
coll MPI 28% 3% 14% 16% - - -

DR gen MPI 6% 18% 3% 5% - - -

T85L16 MPI performance sensitivity

DTH gen MPI 2% 5% 13% 17% - - -
coll MPI 11% 30% 120% 111% - - -

DR gen MPI 14% 35% 92% 24% - - -

TABLE 5
Runtimes of 5 day simulations of PSTSWM (seconds) and performance degradation from using gen
and coll GZQOT'itth-' (t;en,mpi - topt,mpi)/topt,mpi and (tcoll.mpi - topt,mpi)/topt,mpi-

DTH gen MP1
coll MPI
DR gen MPI

DTH gen MPI
coll MPI
DR gen MPI
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Abstract: Parallelization Agent (PA) is a knowledge-based system forparallelizing 3-
dimensional, time marching, explicit finite difference science codes. It The MM35,
RAMS, RADM and a couple of other codes have been parallelized with help of the PA.
It was possible to parallelize the MMS5 code in two weeks as opposed to several years it
took for manual parallelization by a team of expert programmers.The PA provides a
customized but flexible environment forparallelizing atmospheric science codes. It
supports portable higher level abstractions that simplify the process of parallel
programming by automating tedious details of parallel programming and hiding low level
architectural details. The PA has an interactive capability for exchanging information
about specific applications. This interaction is closer to the way application program
methods are understood and communicated by humans.

1. Introduction

Parallel computing can provide the computational resources to perform large-scale
simulations needed in atmospheric and environmental sciences. Johnson et al [1] report
results of a regional prediction model run on a parallel computer, and Kim et al [2]
discuss speed-up and load balance for an implementation of the Penn State/NCAR MMS5
model on 64 processors. However, there are major hurdles in applying parallel computing
to run legacy codes in atmospheric sciences. Manualparallelization is tedious, prone to
errors, and very time consuming.

Difficulties in manualparallelization point to a need for automation. Several automatic
and semiautomatic tools have been developed. Doreen Cheng has published an extensive
survey [3] with 94 entries for parallel programming tools out of which 9 are identified as
"parallelization tools to assist in converting a sequential program to a parallel program.”
A full automation of parallelization process requires solutions to problems that are known
to be NP-complete (intractable in a technical sense). The emphasis of recent research has
been on developing interactive tools requiring assistance from the user.

The Parallelization Agent (PA) [4,5], developed at Iowa State University, is a tool for
developing efficient paralle] programs based on the message-passing programming
model. As opposed to parallelization of arbitrary programs, the PA is centered on a key
numerical method to provide a customized but flexible environment for building parallel
physical science simulation codes. We have used the PA toparallelize several
atmospheric codes. At the Athens conference, we demonstrated parallelization of MMS5
and RAMS using the PA. Using MMS5 as the example, this paper describes capabilities of
the PA and demonstrates how it is used.
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2. Parallelization Agent (PA)

So far, the research is predominantly focused on automaticparallelization of arbitrary
sequential programs. The PA shifts the focus to specific classes of codes that are based on
numerical methods for modeling a broad range of physical phenomena. By focusing on a
class of problems, the class-specific high-level knowledge can be used to simplify the
otherwise intractable problem of automaticparallelization. Historically, a similar shift in
focus has occurred in the domain of artificial intelligence when expert systems were
introduced. While the problem of developing anintelligent program is too difficult in
general, the idea of expert systems has proved to be fruitful in addressing important
problems of special interest.

The PA development takes a pragmatic approach by automating tedious and time
consuming tasks rather than striving towards complete automation. For example, it is
very difficult to automate recognition of the algorithmic form. The knowledge about the
algorithmic form is crucial for processing complex codes. A programmer, for instance,
will first find out that the model is based on thefinite difference method (FDM) and then
use knowledge about the FDM to proceed with parallelization. The PA follows a similar
process. To identify the underlying numerical method, it relies on the user.

The programming model is the single program multiple data (SPMD) model with
message passing for inter-processor communication. The current version of the PA
handles FORTRAN 77 codes. The PA employs a structured process that relies on specific
knowledge about the numerical method to arrive at an efficient parallel program. The PA
currently supports parallelization of 3-dimensional time marching explicit finite
difference codes. The PA system runs on Unix workstations and PCs running under the
Linux operating system.

2.1 Capabilities

The PA is envisioned as a part of the computational infrastructure to enable advances in
physical science simulation problems. The PA can be useful in multiple ways. In addition
to parallelization, it can be used to diagnose serial code or to display different type
information about serial or parallel codes. It can assist application scientists in
discovering important information about a code without having to go through it line by
line. Atmospheric scientists will find the following capabilities useful:

Diagnostic facility

Each individual source file can be diagnosed. The PA can point out various problems
such as: data exchange patterns not consistent with the differencing scheme, ambiguous
uses for loop indices. The PA provides auxiliary information and specific references in
the code to resolve these problems. The auxiliary information, for example, will show the
indexing patterns that are causing the ambiguity. The diagnostic facility is interactive and
allows exchange of information between the user and the PA. The PA indicates if a
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source file is ready forparallelization. If not, the user has to respond to the problems
identified by the PA.
Display of call-order tree

The PA traces the sequence of subroutine calls and displays thecall-order tree. This
helps the user to understand the structure of the code. After parallelization, the call-order
tree includes markings to show the subroutines that will have communication.

Selective Parallelization

The user can parallelize either the selected subroutine only or all routines that are called
from the selected routine. The selective process allows the user to view the effects of
including subroutine calls. The PA does inter-procedural analysis and shows additional
communication that may be introduced due to subroutine calls.

Display of Code Blocks

Parallelization results in breaking the given code into separate blocks with
synch/exchange points between successive blocks. The PA shows the sequence of blocks.
The user can click on a block to see the serial code corresponding to that block. A display
of code blocks helps the user to understand the relationship between the serial and
parallel codes.

Display of Communication Stencils

The PA determines the data exchange patterns at each of the synch-exchange points. The
user can view these patterns in the form of stencils showing the communication that will
occur in parallel processing. Application scientists find these stencils particularly
valuable because they also show thedifferencing scheme at work.

Automatic Parallelization

The diagnostic phase requires assistance from the user and may take a couple of weeks
for a large code like MM5. However, the parallelization itself is automatic and quick. The
PA does global-to-local index transformations necessary to convert the serial code into a
parallel code. It identifies the communication requirements, optimizes communication,
and inserts the message passing primitives in appropriate places. The PA allows three
options for generating the actual parallel code: run-time system library, MPI, or PVM. At
present, the first option is operational.

Graphical Interface

The user can interact with the PA system through a graphical interface. By click of a
button the user can select a file, diagnose source code, view the call-order tree, parallelize
selected files etc.
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2.2 Using the PA
In this section we describe the mechanics of using the PA. The steps are as follows:

1. As observed earlier, the PA makes use of class-specific information to process the
code. The user has to first identify the class of the code to be processed. This is done
by selecting one class from the choices given by the PA. For MMS, RAMS and other
codes based on the finite difference method, the user needs to select the FDM class.

2. Next the user gives the pathname for the code directory, identifies the key indices
from the specific code, and provides a high-level parallel mapping. The interface for
providing this information is shown in Figure 1.

3. The user can first view the call-order tree for the specified code and decide on the
routines to be processed.

4. The user must diagnose the selected routines before they can beparallelized. To
diagnose a routine the user selects the routine from a menu.

5. If a selected routine has a problem, the PA displays the problem on a screen. To
resolve the problem, the user may have to either provide auxiliary information about
certain array variables or make changes to the serial code. The PA provides specific
references to locations in the code and other information to assist the user in resolving
the problems.

6. After an attempt to resolve the problem, the user can diagnose the selected routine
again and the PA indicates if the routine is ready forparallelization. If the user tries to
parallelize a routine before resolving the problems, then theparallelization fails. The
current version of PA indicates that the parallelization failed but does not provide any
additional information. In this situation the user needs to go back to the diagnostic
phase.

7. Once all the selected routines are diagnosed the user can proceed to the parallelization
phase. The user can choose to parallelize only the selected routine or all the routines
called by it. The parallelization is automatic. The call-order tree is traversed from
bottom up during parallelization. The routines at the lowest level of the call-order tree
are processed first and the routine at the root is processed last.

8. The user can identify the routines where communication occurs by viewing the call-
order tree. The PA marks these routines during parallelization.

9. The user can check where the synch-exchange points are inserted by invoking the PA
to display the code blocks. The user can click on a block to see the serial code
corresponding to that block.

10. The user can view the communication at a synch-exchange point by selecting the
synch exchange point and clicking the stencil button.

11. Finally, the user can generate the parallel code by clicking a button. The PA displays
three options: run-time system library, MPI, and PVM. The first option is operational
at present.

3. Parallelization of MMS5

As an experiment, we used the PA to parallelize MMS. Thesolvel.f and all the
underlying subroutines wereparallelized. The parallel code generated by the PA was
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compared with the code developed by expert programmers. Here we describe our
experience of parallelizing the MMS code using the PA. To provide a concrete
illustration, actual displays from the PA are reproduced.

To start the process, we identified MMS as a finite difference code. We wanted the
parallel MMS5 to map the three-dimensional domain onto a two-dimensional array of
processors so that the computations in a column of nodes are assigned to a single
processor. The same mapping is used in manualparallelization [2,6]. The MMS5 code uses
indexes i, j along the horizontal plane andk along the vertical direction. To direct the PA
to follow the desired mapping, the user needs to identifyi and j as the indices for
parallelization. The directive is conveyed to the PA, as shown in Figure 1.

The call-order tree for MMS5 is shown in Figure 2 C. The call-order tree was used to
identify the subroutines called bysolvel.f. These subroutines were diagnosed. It took two
weeks for one person to complete the diagnostic phase.
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Figure 1: Initial information given to the PA

We observed that the problems detected during this phase arose from two main sources:
aliased array variables and ambiguous or inconsistent indexing. For examplelJ1(j , k) is
used as an alias for U(1,j, k). One situation for ambiguity is that an array is indexed by
constants and it is not clear from the context if the array is supposed to be indexed byi or
J. The displays for call-order tree, selecting a file for diagnosis, and diagnostic
information from the PA are shown in Figure 2.
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Figure 2: Diagnostic Phase of the Parallelization Agent

After the routines are diagnosed, the next step is parallelization. Theparallelization is
automatic and very fast. For solvel.f and all its subroutines, it takes a minute or so.
During this process, the PA determines the synch/exchange points and the inter-processor
communication at each of the synch/exchange points. The results ofparallelization can be
viewed through a graphical interface. As shown in Figure 3a, theparallelization of

solvel fresulted in six blocks of code separated by synch/exchange points. The serial
code corresponding to a block can be viewed by clicking on that block. The stencil for
one of the communication points is shown in Figure 3b. The stencils are observed by
clicking the stencil button and selecting a synch/exchange point.

The final step is generating a parallel code. This step involves global-to-local index
transformation to modify loops in the serial code and insertion of communication
primitives. Prior to this stage, the PA has determined the communication pattern, and the
objective at this stage is to take care of the lower-level details of communication. The PA
is designed to support different alternatives including MPI for handling the details of
communication. Currently, the PA supports a modified version of the run-time system
library [7] developed at Argonne National Laboratory.
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a. Parallel code blocks b. Stencils showing communication

Figure 3: PA Displays showing information about parallel MM5

3.1 Observations

* The parallel code produced by the PA has six synch/exchange points as opposed to
three for the code developed by expert programmers [ 2, 6]. Without any optimization
the code has hundreds of synch/exchange points. Thus, the PA came very close to
human experts in minimizing the synch/exchange points. Moreover, we found that it
is not too time consuming to do the further reduction by hand to get to from six to
three synch/exchange points.

* The PA approach is very helpful in eliminating debugging of parallel code. The
manual process is prone to errors. In a large and complex code such as MMS5 that
involves hundreds of variables, more that hundred source code files and thousands of
lines of code, debugging the parallel code is very difficult. The PA uses a formal and
automated method that eliminates errors inherent in a manual approach. However,
one must ensure that the PA is given correct information when it detects a problem
and asks for additional information during the diagnostic phase. We obtained some of
this information by talking to the application scientist. As opposed to spending effort
on debugging parallel code, the PA approach is more amenable to high-level
reasoning and leads to better understanding of the code that is likely to be useful for
maintaining the code in the long run.

» The PA dramatically reduced the amount of time and effort. It took a team of
programmers more than three years to complete the parallelization of non-hydrostatic
version of MMS5. With the help of the PA, a single person completed the
parallelization of the MM5 code in two weeks.
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Figure 4: Generation of parallel code

4. Conclusions

The Parallelization enables efficientparallelization of legacy codes in atmospheric
sciences. It automates tedious and time-consuming parts of the parallelization process. It
eliminates commonly encountered errors in the manualparallelization of large and
complex codes. It supports portability by producing parallel codes that can run on a
variety of distributed memory platforms. The PA can produce scalable parallel codes for
massively parallel computing. The PA approach will facilitate management and
evolution of complex codes. Often parallel models cannot keep pace with advances in the
serial model because of the prohibitively long time it takes toparallelize serial models.
The PA will be an effective tool to address this problem.

The PA can be enhanced to extend its applicability and usefulness. The PA is based on
class-specific approach and it can be enhanced to incorporate other classes. Currently
efforts are underway to create similar tool for codes based on the finite element method.
There is also a need for providingan affordable parallel solution. It will help many
countries to take advantage of advances in atmospheric sciences to plan growth and
manage resources. With the advent of powerful and relatively inexpensive PCs, a cluster
of PCs can be a reasonably good medium for parallel computing. We are currently
experimenting with the PA on a cluster of PCs.
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Abstract

The use of the DEEP development environment to analyze parallel program performance
is described. The full integrated environment contains tools for the creation, analysis
and debugging of parallel programs. All information is related back to the original
parallel source code. This paper describes the program analysis portion of DEEP and
describes its use on parallel programs with distributed memory (message passing with
MPI, data parallel with HPF and Data Parallel C), and shared memory (automatic
parallelization and OpenMP).

1. Introduction

The DEEP system provides an integrated parallel program development environment that
binds debugging and performance tools back to the original parallel source code. DEEP
includes many useful tools in a highly interactive integrated GUI interface, and it
provides a simple and intuitive way to understand and investigate parallel program
structure, performance, and behavior.

The goal of the system is to support parallel programming for the most frequently used
languages and target systems, in the same framework. To this end, DEEP supports both
distributed and shared memory parallel programming, and both Fortran and C languages,
within a single DEEP executable. Having a single system that supports all of these
parallel programming models and languages provides great flexibility for the user. Most
parallel programmers should benefit from the system.

1.1 Distributed Memory Programming.

Distributed memory parallel computer systems can range from networks of workstations
or even PCs to large-scale massively parallel computer systems designed for efficient
inter-processor communication. Programming for distributed memory systems is often
done with explicit message passing systems (such as MPI) or data parallel languages
(such as HPF or Data Parallel C). DEEP supports both of these programming methods.
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1.1.1 MPI-2 Support

The MPI-2 message-passing interface [1] allows the user to write a portable distributed
memory program with a rich set of calls to allow the interchange of information between
Processors.

DEEP keeps track of all MPI-2 calls in a Fortran or C program, and highlights and
profiles these in the program analysis tools; this allows a better understanding of the
performance characteristics of MPI codes. Debugging of MPI-2 programs can be a
challenge, as several groups of processors can be working on different calculations in
parallel; the DEEP debugging interface allows the user to see what is happening in each
parallel group.

1.1.2 Data Parallel Language Support

Data parallel programming allows the user to concentrate on the higher level aspects of
the decomposition of the program data across the available processors, while the
compilation system performs all the low-level bookkeeping and provides for all of the
communication needed between processors. Data parallel programming languages
include High Performance Fortran[2], which is an emerging standard first proposed in
1993, and the Data Parallel C Extensions (DPC)[3], accepted as a technical report in 1994
by the X3J11 ANSI C Committee. DEEP works with both HPF and DPC programs([4],
and can even support mixed language Fortran/C applications

Data parallel languages have two distinguishing features: syntax for describing the
distribution of data across processors, and a method for making clear the parallel nature
of calculations. HPF has a set of directives that allow specification of data distribution
and DPC has "shape" declarations for this purpose. Both HPF and DPC have array
syntax, which allows entire arrays of data to be manipulated with single statements.

Critical to the performance of data parallel codes is whether calculations are successfully
partitioned across processors, and where the data parallel compiler had to add message-
passing code. The DEEP system provides feedback to the user so that performance
problems can be quickly identified.

When debugging of data parallel programs, the user would like to treat the program as a
single executable, and the DEEP debugging interface makes this possible.
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1.2 Shared Memory Programming

For shared memory systems, DEEP supports Fortran and C programs that are being
automatically parallelized[5], and programs that are being parallelized by hand with the
recently specified OpenMP[6] set of directives. DEEP for SMP targets systems that
support threads, such as the POSIX threads standard, and the system works on both
UNIX systems and Windows/NT.

1.2.1 Automatic Parallelization Support

With DEEP, users of automatic parallelization can quickly see what loops have been
parallelized and what loop nests have been put into parallel regions. This allows the user
insight into the compiler’s actions and the performance that results.

1.2.2 OpenMP Support

OpenMP is a large set of directives that allow the user to direct parallelization of a code.
DEEP keeps track of OpenMP constructs and profiles the execution of OpenMP codes so
that the user can see the effect of using the directives on the performance of the
application.

1.3 Using DEEP

DEEP program analysis tools allow use of both compile-time information (gathered by
the compilers) and run-time information (gathered by a run-time profiling library) to
investigate a parallel program in more detail. In analyzing a program with the DEEP
system you would normally start with the tools that look at the whole program, identify
procedures of interest, and then “drill down” with tools that look at the internal structure
of individual procedures.

2. The DEEP Framework

The DEEP system generates an abundance of information about a parallel program.
Presenting this type of information in a coordinated package can be a significant
challenge to user interface design. DEEP is organized around a single GUI framework
that organizes and displays the wealth of information provided by the system. The DEEP
framework is organized into user-configurable panels that contain “viewers”. Each
viewer in turn contains pages that hold the information.

Panels can be reconfigured by grabbing and moving. Normally, a user will have three to
five panels open. When the size of one panel is changed, the other panels automatically
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readjust themselves accordingly. We find this arrangement much easier to deal with than
many independent windows popping up all over the screen. Also, a panel can be
expanded to fill the whole DEEP window, then restored to its previous configuration;
this is easy to do through a right-click pop-up menu.

Within these panels are viewers, a viewer being a software tool for examining some
aspect of a parallel program. Viewers can be docked in any panel or popped into their
own window. Viewers in a panel or pages in a viewer are selected with a click of a
button. Figure 1 shows a DEEP display with three toolbars (along the top) and four
panels. Tabs along the bottom of the panels select viewers inside the panel; tabs at the
top of each panel select between pages in a viewer.
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Three toolbars can be seen near the top of Figure 1. Toolbars contain buttons that invoke
various functions. The buttons contain help tips, which is useful if the icon does not
clearly bring to mind the function to be performed. The toolbars can be dragged to
docking areas at the top, bottom, left and right of the panels.

3. DEEP Program Views

This section examines the DEEP program analysis tools that display some aspects of the
whole program. These tools are the starting point for understand program structure and
performance.

3.1 Program Information Table

DEEP allows you to inspect the program as a whole in various forms. For inspection of
raw data gathered from compiling and executing the program, the program information
tables are the place to start; they list each of the procedures in the program with various
statistics. The statistics display are customized based on the target system -- different
statistics are displayed for an MPI code than for an OpenMP code, for example. For an
MPI program, statistics about message-passing are paramount; for OpenMP, statistics
about parallel regions are important.

There is a compile-time table that shows information gathered from compile-time
analysis and optimization of the program, such as the number of parallel loops. The run-
time information table lists CPU time, wallclock time, number of messages passed,
number of calls, number of loops executed, average iteration count, etc. There is also an
inclusive runtime table which has data for the indicated routine and all routines it calls.
Finally, there is a loop table that presents all of the instrumented loops in the program.
The tables can be sorted on any field, and procedures of extra interest can be highlighted
by user-selected criteria. Procedures that are not of interest can be pruned. Selecting a
procedure in the table (by clicking with the mouse) brings up detailed information about
the procedure in other panels.

The buttons in the tool bars at the top of the display can be used to launch other views of
the program as well. The example in the upper right quadrant of Figure 1 shows three of
the time-related fields in the program table; by default, the table is sorted by wallclock
time and all procedures that use more than 10% of the wallclock time are highlighted.
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3.2 Call Tree Viewer

The call tree display allows browsing of the call relationships of the procedures. Any
procedure can be set as the root, and both calling trees (down to leaf procedures) and
called trees (back to the main procedure) can be browsed. If runtime data is available, the
trees are annotated with inclusive time and (for distributed memory targets) message
counts. This performance annotation helps direct the browsing of the tree to branches
that used the most resources.
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Figure 2: Call Tree View

The tree can be expanded or contracted at each level by clicking on the + and - icons (see
Figure 3). When you get to a point in the tree where you would like to have more
information, you can use the tool bars to move directly to detailed displays, or the source
code, of the selected procedure.

3.3 Whole Program Viewer

With the whole program viewer, the entire program can be examined on one screen, with
color-coded lines of pixels representing performance of source lines in each subprogram.
Each procedure is represented by a rectangle which is proportional to the number of
source code lines. The lines of pixels represent the individual lines of code, and are
indented to correspond to control structures in the original source (loops, conditional
blocks, etc.). Lines can be color-coded based on compile-time optimization feedback (for
example partitioned loops in blue, non-partitioned loops red) or on run-time
instrumentation (lines colored coded based on the amount of time spent there).

Clicking on any pixel in a rectangle brings up the corresponding source line in the source -
code editor, and also establishes that area in the code abstract viewer for that procedure.
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This allows you to move quickly from the high-level program information to specific
information about an area of the program.

In Figure 3, DEEP uses static performance information from a data parallel compiler to
color-code lines in each procedure, based on how well they were compiled for parallel
execution. Source lines that result in inefficient code (messages need to be passed to
other processors) are highlighted at the red end of the spectrum; source lines of loops that
are partitioned cleanly (with minimal message passing) across the parallel processors are
highlighted at the blue end of the spectrum (see the key at the top of the window in Figure
4). Other colorings of the whole program display are possible, including ones based on
dynamic performance information.
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Figure 3: Whole Program View

3.4 Summary Charts

Several summary charts are prepared, based on the target parallel system. The charts can
include the wall clock time by procedure and the breakdown of total messages passed by
procedure. These let the user quickly see where the resources are being spent in the
parallel program. These charts are presented as colored pie charts or bar graphs.

3.5 Load Balance Displays

The message load balance display and the CPU load balance display are intended to give
information on how the computational load is distributed. Is one processor sending most
of the messages or doing most of the processing? If so, then you may want to reconsider
how you have distributed the data. For instance, a block-cyclic approach may provide
better load balance than a pure block distribution on a data parallel program. For SMP
programs, low utilization of the last few threads may indicate that the program can get by
with less threads.
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An example of a message balance display for a data parallel program run on four
processes in seen in Figure 4. The display shows the number of sends and receives for

each logical process.
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Figure 4 — Message Load Balance

4. DEEP Procedure Views

When a procedure of interest is determined by examining the program-level views, you
can move to the more detailed procedure-level displays.

4.1 Code Abstract Viewer

The code abstract viewer allows the programmer to examine routines with an overview
of important control structures. This view is annotated with optimization notes from the
data parallel or SMP compiler. From this display, you can move to the corresponding
line in the source code editor with a click of the mouse. The display is color-coded to
provide performance feedback at a glance. The lower left quadrant of Figure 1 shows
part of the abstract for a routine. OpenMP directives and MPI calls are preserved in the

Code Abstract View.
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4.2 Symbol Viewer

You can track the uses and definitions of variables throughout the parallel program with
the symbol viewer. In the lower right quadrant of Figure 1 various kinds of symbols can
be seen. Symbol information including scope and attributes is available. The file of
definition is displayed, and if clicked on will bring up this file in the editor.

The global symbol page lets you see where global symbols are set and used across
procedures and files. This can be very useful in large programs.
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Figure 7 — Symbol References

Clicking on the “References” column brings up a new page that lists all references of a
variable, and allows the user to move through these references with the click of a button.
As each reference is selected, the corresponding line of code is displayed in the source

code editor.
4.3 Performance Viewers

The loop performance viewer and call performance viewer present tabular information on
the details of a procedure’s performance. This performance information is gathered
during run-time at the individual loop and call level. The loop performance viewer
combines compile-time loop optimization information with measured run-time
performance.
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Figure 8 - Loop Table
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For MPI-2, there is an MPI viewer that summarizes information about the execution of
MPI calls in the current procedure.

5. DEEP Debugging Tools

DEEP also provides run-time interactive GUI-based debugging of parallel programs at

the source code level. A demonstration screen snapshot of the debugger interface can be

seen in Figure 9. DEEP’s debugger was designed so that the programmer can debug the
source code at the level of abstraction most natural for the type of parallel program. Tools
include:

e Source Code Viewer. Shows the execution location in the source code. Features
language-sensitive syntax highlighting, and interactive symbol browsing and variable
value inspection.

e Inspection, Watch and Locals viewers. DEEP provides several viewers that display
the value of variables. Simple variables are best displayed in Watch viewers, and
structured variables in Inspection viewers. The Locals viewer is similar to the Watch
viewer, showing all active variables in their context. The variables to be watched or
inspected can be selected by dragging from any other viewer, such as the Source Code
Viewer or the Symbol Browser.
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Figure 9 — Debugging Snapshot
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® Graphical array viewers. Multidimensional distributed arrays can be visualized using
two and three-dimensional graphical tools.

® Breakpoints. Both conditional and unconditional breakpoints are supported.
Breakpoints can be set with a single click.
Watch points. Watch points suspend execution when the value of a variable changes.

® Trace points. When a trace point is reached in the source code, user selected
expressions are displayed in the program log viewer.

® Performance Zones. You can establish performance zones in the source; the system
can display the CPU time, wall clock time, messages sent or received, and I/O done
by each process in each zone.

® Processor Status. The current state of all the processors is shown by its color in the
processor status viewer. In addition, detailed information about individual processes
can also be displayed.

In order to support different types of parallel programs DEEP uses the concept of a
processor set. A processor set can contain all processors that are running the same
executable. Users are free to define their own processor sets, and a set can contain only
one processor. DEEP’s viewers display information gathered from the current processor
set. For example, since Data Parallel programs are normally viewed as a single object,
the most natural processor set contains all the processors. Thus, the programmer can
view the code in as if it were a single executable. Arrays that might be distributed over a
number of processors are treated by the debugger as single object. The de-bugger handles
the tasks of assembling the parts of array from the individual processors when the
programmer views or manipulates values in the array. The debugger makes sure that the
processor that make up a set are kept in synchronization when breakpoints are triggered
and during single stepping.

Processor sets are created by the DEEP debugger according to the type of parallel
program. The user can modify DEEP’s sets and create other sets by dragging processor
icons into set icons. The user can also create toolbars that show the state of the sets or of
individual processors. In Figure 9, DEEP is being used to debug a data parallel program
running on eight processors. The toolbar along the right side of the display uses colors to
display the state of each processor within the single processor set. If the debugging
session contained other processor sets, the user has the choice of displaying a toolbar for
each set. In addition, a summary toolbar showing one icon for each set can be displayed.

Breakpoints, trace points, etc. are set on all the processors in the current processor set.
The easiest way to set a breakpoint is to right click in the breakpoint area (the gray left
border of the source code viewer shown in Figure 9) and selecting the desired type from
the popup menu displayed. Figure 10 shows the dialog shown to set a conditional
breakpoint.
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Figure 10, Edit Breakpoint Dialog.

Performance zones are designed to allow the user to time areas of the code. A
performance zone is made up of two performance points. The performance point that
starts the zone, called the start point, is denoted by V¥ in the breakpoint area, and the
point that ends the zone, the stop point, is denoted by A. The user ties a pair of points
together by giving each the same name. The user may assign colors to the performance
zone.

When the user code reaches a performance point messages may be logged in the message
log viewer and the program time line viewer. The color of the performance point tags the
message display. If the point is the start point of a zone then the following timers or
counters may be started:

e The CPU timer.

e Message received counter.

e Message sent counter.

¢ 1/O counter.

The user code then continues execution. If the point is the stop point of a zone, the timer
and or counters are stopped and appropriated messages can be sent to the message log
and/or the time line.

Figure 11 shows the dialog box used to define a performance point in a C program. In this
figure, we are also showing the select color dialog box.
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Figure 11. Performance Point Editing Dialog, with the color selection dialog.

The source code viewer is fully integrated with the rest of the debugger. In the Figure 12,
the right mouse button has been clicked over a variable name, which cause a pop up menu
to appear with details about the variable. Also shown in the figure is a blue triangle
which indicates the next source code line to be executed, and the pink bar shows where a
temporary breakpoint has been set.

Variable names can be dragged from the source code viewer onto other viewers where
appropriate. For example, if a name is dropped on to a watch or inspector window, the
value of the variable will be displayed during execution. Names can also be dropped onto
the browser window, which will cause the browser to display its information about the
variable.
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6. Future Work

DEEP is planned to include tools that allow the user to see what is happening in the
system as the parallel program executes (parallel program monitoring tools). The user
will be able to visualize the current status of processors, message traffic, and calculations.
These tools are currently in development.

Since DEEP supports both Data Parallel and SMP models, extending it to support
hybrid/cluster/NUMA and other such systems seems to be a natural progression.
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